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A phase-field model that allows for quantitative simulations of low-speed eutectic and peritectic solidifica-
tion under typical experimental conditions is developed. Its cornerstone is a smooth free-energy functional,
specifically designed so that the stable solutions that connect any two phases are completely free of the third
phase. For the simplest choice for this functional, the equations of motion for each of the two solid-liquid
interfaces can be mapped to the standard phase-field model of single-phase solidification with its quartic
double-well potential. By applying the thin-interface asymptotics and by extending the antitrapping current
previously developed for this model, all spurious corrections to the dynamics of the solid-liquid interfaces
linear in the interface thickness W can be eliminated. This means that, for small enough values of W, simula-
tion results become independent of it. As a consequence, accurate results can be obtained using values of W
much larger than the physical interface thickness, which yields a tremendous gain in computational power and
makes simulations for realistic experimental parameters feasible. Convergence of the simulation outcome with
decreasing W is explicitly demonstrated. Furthermore, the results are compared to a boundary-integral formu-
lation of the corresponding free-boundary problem. Excellent agreement is found, except in the immediate
vicinity of bifurcation points, a very sensitive situation where noticeable differences arise. These differences
reveal that, in contrast to the standard assumptions of the free-boundary problem, out of equilibrium the diffuse
trijunction region of the phase-field model can �i� slightly deviate from Young’s law for the contact angles, and
�ii� advance in a direction that forms a finite angle with the solid-solid interface at each instant. While the
deviation �i� extrapolates to zero in the limit of vanishing interface thickness, the small angle in �ii� remains
roughly constant, which indicates that it might be a genuine physical effect, present even for an atomic-scale
interface thickness.
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I. INTRODUCTION

The phase-field method has emerged in recent years as a
powerful tool to study interface dynamics in areas such as
solidification �1�, solid-solid phase transformations �2�, and
fluid mechanics �3,4�. Their common point is that the dy-
namics of interfaces is coupled to one or several transport
fields, which can lead to the spontaneous emergence of com-
plex interfacial patterns. The characteristic scale of such pat-
terns is typically macroscopic, whereas the interfaces are
rough on a scale of a few times the range of the interatomic
forces. Because of this intrinsic scale separation, the evolu-
tion of pattern-forming interfaces has traditionally been for-
mulated in terms of free-boundary problems �FBP�, in which
the interfaces are assimilated to mathematical surfaces with-
out thickness �5�. However, the numerical treatment of FBPs
is highly nontrivial, because one needs to discretize and track
the sharp boundaries.

The phase-field method avoids this need by introducing
additional fields to distinguish between phases. These “phase
fields” take different, constant values in each bulk phase, and
interpolate smoothly between these values through a diffuse
interface of thickness W. The equations of motion for these
auxiliary fields are set up so that one of their intermediate

level sets, which will represent the interface, obeys the de-
sired FBP in the so-called “sharp-interface limit,” in which
W tends to 0.

To construct these evolution equations, the physics of dif-
fuse interfaces is typically used as a guide, and often some
qualitative physical meaning can be attached to the phase
field. In solidification, for instance, it can be interpreted as an
order parameter, and its time evolution considered to be a
relaxation towards the minimum of a free-energy functional,
in the spirit of the time-dependent Ginzburg-Landau models
for the out-of-equilibrium thermodynamics of phase transi-
tions �6�. The sharp-interface limit of the model is then
checked a posteriori by matching, order by order, terms of
asymptotic expansions for the fields in powers of W in a
region of slow �the bulk� and rapid �the interface� variation
of the fields. At the lowest order in the interface thickness W,
this procedure is quite straightforward and yields a FBP that
does not exhibit a dependence on W.

However, since the numerical discretization needs to re-
solve the rapid variation of the fields through the interfaces,
simulations are only feasible using finite W. Furthermore, in
order to reduce the gap between the scales of the interface
thickness and the pattern, W often needs to be chosen several
orders of magnitude thicker than in reality. It is therefore
mandatory to assess the influence of W on the simulation
results. This can be done rigorously by going to the next
order in W in the above matching procedure. In this “thin-
interface limit,” in which W is small but finite, an effective
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FBP is obtained, which now generally contains terms that
scale with W.

While these terms may reflect genuine �but small� physi-
cal effects associated with the thickness of the interfaces W,
they must be eliminated either by a judicious choice of the
model and its parameters �7�, or by additional terms in the
evolution equations tailored to counterbalance these effects
�4�, or by a combination of both �8�. This is necessary to
scale up W without altering appreciably the outcome of
simulations. If all terms in W can be eliminated, the outcome
is independent of W, at least below some value of W for
which the effective FBP holds �and above which terms of
higher order in W become important�. This complete elimi-
nation was achieved for the first time by Karma and Rappel
for the solidification of a pure substance with equal thermal
diffusivities in both phases �symmetric model� �7�. Their pio-
neer work made it possible to quantitatively simulate den-
dritic growth in three dimensions �9�. More recently, the ap-
proach has been extended to the one-sided model, in which
the diffusivity vanishes in the solid phase, the relevant case
for alloy solidification �8�.

Industrial alloys often have more than two components
and more than one solid phase. As a first step to deal with
such alloys, we formulate and test here a phase-field model
that carries over the above advances to two-phase solidifica-
tion, a problem that is both practically relevant in metallurgy
and of interest for the physics of pattern formation. Eutectic
and peritectic two-phase composite structures are, together
with dendrites, the most common solidification microstruc-
tures found in industrial alloys �10�. At a binary eutectic or
peritectic point, two different solid phases coexist with the
liquid. Under certain conditions, both solids grow simulta-
neously in a cooperative manner �coupled growth�. For eu-
tectic alloys, the resulting composite can consist either of
alternate lamellae of each solid phase or of rods of one phase
immerged in a continuous matrix of the other.

Due to the presence of two different solid phases, coupled
growth can exhibit a rich variety of different patterns. The
best studied setting, used as a relevant example throughout
this paper, is the directional solidification of thin eutectic
samples �11–15�. In this process, samples are pulled from a
hot into a cold region with a constant velocity, and after a
transient the solidification front reaches a steady state char-
acterized by a fairly uniform lamellar spacing. This spacing
is not intrinsically selected by the system, but depends on the
growth history. Upon a �large enough� change of pulling ve-
locity, the front undergoes various instabilities and exhibits
many classical features of nonlinear physics, such as bifur-
cations to states of lower symmetry, periodic limit cycles,
spatiotemporal chaos and solitonlike traveling perturbations
�13–17�.

Numerous phase-field models for two-phase or multi-
phase solidification have been published �18–27�. While
such models can qualitatively �25–27� �or, in some cases,
even quantitatively for some aspects �28�� reproduce experi-
mental observations, more accurate modeling is necessary in
order to carry out detailed comparisons to experiments on
specific substances. Albeit all those previous models have the
correct sharp-interface behavior, it seems quite difficult to
perform a thin-interface analysis of them. As a consequence,

the influence of the interface thickness on their results re-
mains uncontrolled.

The reason for this difficulty is intricately linked to the
construction of the models. The starting point for any
asymptotic analysis is the equilibrium front solution that
connects two different bulk phases. For a binary alloy, there
are two or more fields involved �the composition and one or
more phase fields� through two or more coupled nonlinear
partial differential equations, generally without known ana-
lytic solution. In the sharp-interface limit W→0, the cou-
pling between the equations tends to zero, so that a separate
solution of each equation can be found and used in the
asymptotic analysis; however, in the thin-interface limit �W
small but finite�, the coupling terms remain. A strategy to
construct more tractable models is to choose the coupling
terms such that they vanish in equilibrium, which obviously
facilitates finding analytic equilibrium solutions for arbitrary
coupling strength. Such a model has recently been developed
for a dilute binary alloy �8�.

For two-phase solidification, an additional difficulty
arises, because one now needs to distinguish between more
than two phases. The first phase-field models for eutectic
growth used the standard solid-liquid phase field, and a con-
centration field �18,19� or a second phase field �20,21� to
distinguish between the two solids, � and �. Again, the equi-
librium front problem takes the form of at least two coupled
nonlinear partial differential equations with no known ana-
lytic solution. Later on, it was proposed to assign a separate
phase field pi to each phase i, indicating its presence �pi
=1� or absence �pi=0�. Each phase field can then be under-
stood as a local volume fraction, and �ipi=1 locally �22�. If,
on an interface that connects phases i and j, no other phase is
present �pk=0,k� i , j�, the above sum rule permits to elimi-
nate one of the two remaining phase fields from the evolu-
tion equations, and the interface can be described by a single
variable, which, again, makes the existence of an exact ana-
lytic solution more likely. However, the stable solution for
the phase fields across an interface does typically present
some amount of the other phase�s�. Although this recalls the
microscopic physical phenomenon of adsorption at an inter-
face, this effect must be eliminated, because it would scale
with the interface width. Recently, the use of the so-called
double obstacle potential �29� in the volume fraction formu-
lation �30� has permitted to reduce or even eliminate the
presence of supplementary phases in the interfaces. In con-
junction with the so-called interface-field method �31�, this
methodology has recently been applied to simulate eutectic
growth �27�. However, no thin-interface analysis of such
models is presently available, and might even be complicated
by the singular nature of this free energy.

Having all this in mind, our strategy is to develop a phase-
field model for two-phase solidification with a smooth, spe-
cifically designed free-energy functional that ensures the ab-
sence of third phases in the interfaces and with a coupling
between the phase and concentration fields that vanishes in
equilibrium. Although we use as a starting point a free-
energy functional, we will not seek to link our model to
explicit thermodynamic alloy models. Instead of this, the fi-
nal goal is to simulate the given free-boundary problem
�FBP� as efficiently as possible; the free energy functional is
“engineered” in this perspective.
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We obtain a model that can accommodate arbitrary eutec-
tic or peritectic phase diagrams and that exactly reduces, for
each of the two solid-liquid interfaces, to the standard phase-
field model for the solidification into a single solid phase,
with the standard quartic double-well potential. Obviously,
this is advantageous, since we can build on the progress that
has recently been made on this model �7,8�. In particular, we
extend to two-phase solidification the so-called “antitrapping
current,” a phenomenological addition to the phase-field
equations that was recently introduced in order to achieve a
quantitative phase-field formulation of alloy solidification
�8�; more details will be given in Sec. III G.

We thoroughly test our model in two-dimensional simula-
tions and compare the outcome to results obtained with the
boundary integral method �17�. We find that the dynamics of
the solid-liquid interfaces are accurately simulated and inde-
pendent of the interface thickness for sufficiently thin inter-
faces, as predicted by the asymptotic analysis. However, the
dynamics of trijunction points where the three interfaces
meet differs from those traditionally postulated in the classic
free-boundary formulation. These differences, due to the dif-
fuseness of the trijunctions, are explored in detail in the nu-
merical simulations �Sec. IV�.

A preliminary account of some of our results has been
given in Ref. �32�; here, we give a detailed presentation of
both the model and the numerical simulations. The rest of the
paper is structured as follows: We first recall the physics of
eutectic solidification and write down the classic FBP �Sec.
II�. Next, we construct our phase-field model step by step
�Sec. III�; we explore the mapping to single-phase solidifica-
tion on the solid-liquid interfaces to deduce their thin-
interface behavior, and then refine the model to make this
behavior match as closely as possible the FBP of Sec. II. In
Sec. IV we present the numerical simulations and the lessons
one can learn from them. We then conclude with a summary
of our main results and a discussion of further prospects
�Sec. V�.

II. FREE-BOUNDARY PROBLEM

Consider a binary, eutectic alloy. As a relevant example,
we take the transparent organic mixture CBr4-C2Cl6, for
which accurate and extensive experimental data are available
�13–15,33�. Its phase diagram is shown in Fig. 1, where T is
the temperature and C the composition, expressed as molar
fraction of the solute, C2Cl6. The liquidus lines of two solid-
liquid equilibria meet at the eutectic point �CE ,TE�, the low-
est melting point of the alloy. At this temperature, liquid of
composition CE can coexist with two solids of composition
C��CE and C��CE. These compositions define the limits
of the eutectic plateau, of total width �C=C�−C�.

For slow solidification latent heat rejection can be ne-
glected. The temperature is then constant throughout the sys-
tem for isothermal boundary conditions �isothermal solidifi-
cation�. For directional solidification in an imposed thermal
gradient, one must further assume equal heat conductivities
in all phases for the temperature field to be independent of
the interface position and fixed by the experimental setup
only. For a gradient G directed along the z direction with

pulling speed vp in the negative z direction, we then have

T = TE + G�z − vpt� , �2.1�

where we have chosen the origin of the z axis at the position
of the eutectic isotherm at t=0.

The temperature of a solid-liquid interface is given by the
generalized Gibbs-Thomson condition,

T = TE + mi�C+ − CE� −
�iLTE

Li
� −

vn

�i
, �2.2�

where C+, �, and vn are the concentration on the liquid side
of the interface, the local interface curvature, and its normal
velocity, respectively, and i=� ,�. Up to the first two terms
on its right-hand-side �rhs�, Equation �2.2� is the equation of
the liquidus lines, where mi are the liquidus slopes �m��0,
m��0�, taken at the eutectic point, but assumed to be inde-
pendent of the concentration. The third term on the rhs,
where �iL are the solid-liquid surface tensions and Li the
latent heats of fusion per unit volume, represents the capil-
lary effect which lowers the melting temperature of convex
parts of the solid. Finally, the fourth term stands for the ef-
fects of interface kinetics; �i therein is the linear kinetic
coefficient, defined as the proportionality constant between
the local undercooling and the velocity of a flat interface.
Eliminating the temperature between Eqs. �2.1� and �2.2�, we
obtain boundary conditions for the concentrations at an in-
terface of specified position, velocity, and curvature �Eq.
�2.5c� below�.

Growth is limited by solute transport, much slower than
that of heat. For solidification in thin samples, convection in
the liquid is suppressed, and solute transport occurs by dif-
fusion only. Furthermore, diffusion in the solid is in most
cases so slow, that the final distribution of impurities is still

FIG. 1. Experimental phase diagram of the transparent organic
eutectic alloy CBr4-C2Cl6 �modified from Mergy, Faivre, and Aka-
matsu�. C is the concentration of C2Cl6, and we have indicated the
eutectic temperature TE, the equilibrium concentrations of each
phase at the eutectic temperature, C�, C�, and CE, and the width �C
of the eutectic plateau.
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the trace left by the concentration at the solid side of the
solidification front C−, which is assumed to follow the equi-
librium partition relation

C− = kiC+, �2.3�

where ki are the partition coefficients. Therefore, we neglect
diffusion in the solid phases �one-sided model�. Then, the
velocity of the interface and the diffusion flux on the liquid
side are related by the Stefan condition,

vn�C+ − C−� = − n̂ · �D�� �C�+� , �2.4�

where n̂ is the unit vector normal to the interface and point-
ing into the liquid. This condition expresses mass conserva-
tion: The concentration difference between the solid and the
liquid has to be transported away by diffusion in the liquid
for the interface to move. As a corollary, in the one-sided
model the solid-solid interfaces cannot move, and hence their
shape is just the trajectory followed by the trijunctions.

All of the above already specifies the dynamics of each
solid-liquid interface independently. Each of them is thus
found to obey the following free-boundary problem:

�tc = D�2c , �2.5a�

�Dn̂ · �� c�+ = �ci − �1 − ki�c+�vn, �2.5b�

c+ = 	 � zint − vpt

lT
i + di� + �ivn� , �2.5c�

where we have defined the scaled concentration field

c =
C − CE

�C
�2.6�

and the scaled equilibrium concentrations of the two solids at
the eutectic temperature,

ci =
Ci − CE

�C
. �2.7�

Equation �2.5a� holds in the liquid, and Eqs. �2.5b� and
�2.5c� on the interface; the minus �plus� sign in Eq. �2.5c� is
valid for the �-liquid ��-liquid� interface, zint is the z position
of the interface,

lT
i =

�mi��C

G
�2.8�

are the thermal lengths,

di =
�iLTE

Li�mi��C
, �2.9�

the capillary lengths, and

�i =
1

�i�mi��C
, �2.10�

kinetic coefficients. We also define the average capillary and

thermal lengths, d̄= �d�+d�� /2 and l̄T= �lT
�+ lT

�� /2, as well as
the diffusion length

lD = D/vp. �2.11�

Finally, the �-liquid and �-liquid interfaces are connected
by imposing local equilibrium at trijunction points where
three interfaces ��-liquid, �-liquid, and �-�� meet. The bal-
ance of the surface tension at the trijunction points reads

t̂�L��L + t̂�L��L + t̂����� = 0� , �2.12�

where t̂i j is a unit vector tangential to the i-j interface and
pointing outwards from the trijunction. This condition,
known as Young’s law, yields the equilibrium angles between
any two interfaces. An important special case is a steady-
state composite structure such as the lamellae depicted in
Fig. 2, for which the solid-solid interfaces are aligned with
the z direction. The angles of the i-liquid interfaces with the
x direction, called contact angles �we adopt the notation of
Refs. �34,35��, are given by the solution of the equations

��� = ��L sin 
� + ��L sin 
�, �2.13�

��L cos 
� = ��L cos 
�. �2.14�

For equal solid-liquid surface tensions, we have sin 
�

=sin 
�=��� / �2�iL�.
Note that we have not taken into account crystallographic

effects, which would appear through anisotropies in the ki-
netic coefficients and the surface tensions; the latter would
also lead to additional “Herring torque” terms in Young’s
law. It has been shown by boundary integral simulations
�16,17� that all the relevant instabilities and morphologies
can be reproduced by the above model. Therefore, we have
limited ourselves to an isotropic formulation both for the
FBP and the phase-field model.

The growth of lamellar composites has been analyzed in
the seminal paper by Jackson and Hunt �36�. They found that
there exists a family of steady-state solutions parametrized
by the lamellar spacing � �see Fig. 2�. The average under-
cooling of the front, �T, depends on the spacing as

�T =
�TJH

2
� �

�JH
+

�JH

�
� , �2.15�

where

FIG. 2. Sketch of the lamellar geometry with the definitions of
the contact angles 
� and 
�; � is the lamellar spacing.
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�TJH =
2	2�C

��1 − ��� m�m�

m� + m�
�


	P�����1 − ��d� sin 
� + �d� sin 
��/lD,

�2.16�

�JH = 	2lD��1 − ��d� sin 
� + �d� sin 
��/P��� ,

�2.17�

with P���=�n=1
� sin2���n� / ��n�3, and � the nominal volume

fraction of the � phase at the eutectic temperature, related to
the global sample composition c� by c�=�c�+ �1−��c�

�34–36�. The front undercooling has a minimum ��T
=�TJH� for the spacing �JH, which constitutes a reference
length for lamellar eutectics.

III. PHASE-FIELD FORMULATION

In this section we construct and justify our phase-field
model. We start by introducing our notation and a variational
formulation �Sec. III A�. Next, we introduce a free-energy
functional that provides the minimal features of the model,
i.e., three distinct phases with interfaces that are free of any
adsorbed third phase, and enough freedom to fit a phase dia-
gram �Sec. III B�; the equilibrium properties of the model,
including the phase diagram, are then verified in Sec. III C.
The model is analyzed for a two-phase system, and it is
found that it exactly reduces to the usual phase-field model
of single-phase solidification �Sec. III D�. This mapping al-
lows us to deduce the thin-interface behavior of two-phase
interfaces without performing a detailed asymptotic analysis.
Furthermore, this analogy serves us as a guideline to extend
the model, and, in particular, to allow for two independent
kinetic coefficients on the two solid-liquid interfaces �Sec.
III E�, to introduce a nonvariational formulation �Sec. III F�,
to address the one-sided case in which the solid diffusivity is
neglected �Sec. III G�, and the case of different surface ten-
sions �Sec. III H�.

A. Framework and notation

We use three phase fields pi, i=� ,� ,L, and denote p�

�p� , p� , pL�. Each field represents the volume fraction of a
different phase, and hence we would like pi� �0,1�∀ i and

�
i

pi = 1. �3.1�

We then introduce a free-energy functional

F = �
V

fdV , �3.2�

defined as the volume integral of a free-energy density

f�p� ,�� p� ,c,T� = Kfgrad��� p�� + Hfp�p�� + Xfc�p� ,c,T� ,

�3.3�

whose dependencies have been broken down in the follow-
ing way: fp depends only on the phase fields and provides a

“free-energy landscape” in p� ; in particular, it contains the
analog of the double-well potential of single-phase solidifi-
cation. fc couples the phase fields to concentration and tem-
perature and hence defines the phase diagram. It does not

contain a term in ��� c�2, which turns out to be unnecessary.
Both fp and fc are dimensionless; H and X are constants with
dimensions of energy per unit volume. fgrad sets a free-
energy cost for gradients in p� , forcing interfaces to have a
finite width. We will use a quadratic form in the gradients of
the phase fields, and thus generalize the squared-gradient
term of single-phase solidification. Therefore, K has dimen-
sions of energy per unit length.

In a variational formulation of the equations of motion,
the nonconserved phase fields are assumed to evolve towards
the minimum of F,

��p��
�pi

�t
= −

1

H
� �F

�pi
�

p�+p�+pL=1
∀ i , �3.4�

where H has been introduced on the right-hand side to re-
move the dimensions of F, and ��p�� is a relaxation time that
is the same in all equations �3.4� �i.e., ∀i�, but may depend
on the local values of the phase fields �see Appendix A for a
detailed motivation of this choice�. The functional derivative
must be evaluated subject to the constraint of Eq. �3.1�. This
can be done by the method of Lagrange multipliers: A term
��1−� jpj� is added to the free-energy functional, the deriva-
tives are taken as if the variables pi were independent, and �
is determined and eliminated. The result for three phases is

� �F

�pi
�

p�+p�+pL=1
=

�F

�pi
−

1

3�
j

�F

�pj
, �3.5�

where the variations on the rhs are now taken as if all pi were
independent. We recall that variations are evaluated accord-
ing to

�F

�pi�x��
=

�f

�pi
− �

�

��

�f

����pi�
, �3.6�

where � counts the spatial coordinates. Equations �3.4� and
�3.5� automatically ensure �i�pi /�t=0, which is necessary to
maintain consistency with the constraint of Eq. �3.1�. Note
that we do not impose at this level pi� �0,1�∀ i, in contrast
to other formulations �30�. This restriction will instead result
from the specific design of our free-energy functional.

The concentration c is a conserved field, and thus obeys
the continuity equation

�c

�t
+ �� · J� = 0, �3.7�

where J� is the flux of scaled concentration c,

J� = − M�p����
�F

�c
, �3.8�

with M�p�� a mobility.
As already mentioned in the introduction, the key point of

our model is that an interface between any two phases i and
j should be free of any adsorbed third phase, that is, pk
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0∀k� i , j through the whole interface. We hence must
construct a free energy functional F that has stable homoge-
neous solutions for the bulk phases, pk
1 for all phases k,
and such that the only stationary stable solution of Eq. �3.4�
for �pk /�t which connects phases i �pi=1, pj = pk=0� and j
�pj =1, pi= pk=0� is pk
0. With these properties, an i-j in-
terface will be free of phase k, since any perturbation around
pk=0 would relax back to zero. More generally, this require-
ment ensures that i-j interfaces are stabilized only by the
presence of bulk phases i and j at each side and contain no
third phase, and that triple junctions or lines can only exist
where interfaces meet. Note also that, with appropriate initial
and boundary conditions, this guarantees that pi� �0,1�∀ i
�for the continuum equations; in the discretized equations,
small overshoots may occasionally appear�. The require-
ments on F for stationarity and stability read, respectively,

� �F

�pk
�

p�+p�+pL=1,pk=0,1
= 0 ∀ k , �3.9a�

��2F

�pk
2�

p�+p�+pL=1,pk=0,1

� 0 ∀ k . �3.9b�

Furthermore, in order to ensure stability with respect to con-
centration fluctuations, we need to require

�2F

�c2 � 0, �3.10�

which is just a standard condition of thermodynamic stabil-
ity.

To construct a suitable free-energy functional, our strat-
egy is to choose the two parts of the free-energy density that
depend on the gradients only �Kfgrad� and the local values of
the fields only �Hfp+Xfc�, respectively, such that the volume
integral of each one separately satisfies the above conditions.

In the following, we use indices like i , j ,k to make state-
ments general to any phase �, � or L. When several indices
appear in a context, each index represents one phase, and
different indices denote different phases; however, indices
appearing in sums like in Eq. �3.5� run over all phases unless
otherwise stated.

B. Minimal model

For clarity of exposition, we first construct our model
taking the parts of the free-energy density that functionally

depend on the phase fields only, fgrad��� p� and fp�p��, to be
invariant under the exchange of any two phases. We will
later break this symmetry in different ways as it becomes
necessary.

For the energetic cost of the gradients of the phase fields,
fgrad, we adopt the simplest scalar expression that is a regular

and isotropic function of �� p� and respects this symmetry,

fgrad =
1

2�
i

��� pi�2. �3.11�

It is straightforward to check that the volume integral of this
function satisfies Eqs. �3.9�.

As for the potential part fp, we take

fp = fTW, �3.12�

where the triple-well potential fTW is the analog of the
double well in the standard phase-field model of solidifica-
tion with a single solid phase. In order to acquire some “geo-
metric intuition” about its construction, it is useful to visual-
ize it with the help of the Gibbs simplex. We recall �see also
Appendix A� that the Gibbs simplex is an equilateral triangle
of unit height, where each vertex represents a different phase
�either � or � solid, or liquid�, and, for any point, the
�signed� distance to the side opposite to a given vertex rep-
resents the value of the phase field associated to that vertex.
Thus, each side corresponds to a purely binary interface, and
the center, p�= p�= pL=1/3, to the triple point. Points out-
side the triangle represent negative values of one or two
phase fields.

The parts of the free-energy density that depend only on
the local values of the fields, but not on their gradients, fp
and fc, can be plotted as a surface over this simplex. More-
over, the conditions of Eqs. �3.9� on their volume integrals
can be rewritten using Eq. �3.6� to replace functional
with partial derivatives: Focusing on the part that we
are now concerned with, fp= fTW, the conditions read
��fp /�pk�p�+p�+pL=1,pk=0,1=0 and ��2fp /�pk

2�p�+p�+pL=1,pk=0,1

�0. It can be easily verified that the left-hand side of the first
condition is equal to the slope of the fp surface, plotted over
the Gibbs simplex, in the direction k. Therefore, the condi-
tions of Eqs. �3.9a� and �3.9b� can be understood as requiring
zero slope �flatness� and convexity, respectively, in the direc-
tion normal to a side, both on that side and on the vertex
opposite to it. In other words, the sides of the triangle must
be valleys of the free-energy landscape, so that the stable
solutions that connect two vertices run exactly along the
sides �purely binary interfaces�, and each vertex should be a
local minimum; hence, there will necessarily be a saddle
point on each side that will connect the two vertices of the
side, and each interface will thus “feel” a double-well poten-
tial. There should be no other minimum.

The requirement for minima at pk=0,1 along the pk di-
rection �Eqs. �3.9�� suggests to construct the triple-well po-
tential as a sum of equal double-well potentials fDW�p� for all
the phase fields,

fTW = �
i

fDW�pi� . �3.13�

If fDW�p� has two equal minima at p=0,1, fTW will have
equal global minima in each phase i characterized by pi=1,
pj = pk=0, where we recall that different indices denote dif-
ferent phases. Applying the prescription of Eq. �3.5� for
pk=0,1, we find that the slope is equal to �2/3��dfDW/dp�

�p= pk�− �1/3��dfDW/dp��p= pi�− �1/3��dfDW/dp��p= pj�.
Since pk=0,1 and �dfDW/dp��p=0,1�=0, the first term is
zero; furthermore, at pk=1, pi= pj =0 and the other two terms
also vanish; for pk=0, pj =1− pi, and it can be seen that flat-
ness is satisfied whenever fDW�1− p�= fDW�p�, i.e., if fDW is
even in 2p−1. Similarly, it can be shown that convexity is
also satisfied as long as the double-well convexity in the
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wells overcomes its concavity on the maximum in between,
2�d2fDW/dp2��p=0,1��−�d2fDW/dp2��p=1/2�. The stan-
dard quartic double well, proportional to

fDW = p2�1 − p�2, �3.14�

satisfies the above requirements. This choice is particularly
convenient since it will allow us to relate our model to the
standard phase-field model. The result for fTW is plotted in
Fig. 3.

So far, all bulk phases correspond to equally deep wells,
which means that they all have the same bulk free-energy
density. However, the relative stability of phases generally
depends on the local values of the concentration and the
temperature. In the phase-field model for single-phase solidi-
fication, this is implemented by adding a function to the free-
energy density that tilts the double well by an amount that is
proportional to the local driving force for phase transforma-
tions. Here, we need to construct a function that tilts the
triple well in such a way that the conditions of flatness �and,
if possible, convexity�, are maintained. Note that the condi-
tion of flatness in particular, Eq. �3.9a�, not only ensures the
absence of third-phase adsorption, but also that the two wells
of every pure i-j interface remain at pi=0,1 in spite of the
tilt, a condition known to be important for single-phase so-
lidification �7�.

We begin by constructing a function gi�pi , pj , pk� which
raises the well i, gi�pi=1�=1, and leaves the other two as
well as the entire interface between them unaffected, gi�pi

=0�=0. On the other two interfaces �pk=0 with k� i�, we
require gi to be antisymmetric with respect to the saddle
point of fTW at pi= pj =1/2, i.e.,

gi�1 − pi,pi,0� = 1 − gi�pi,1 − pi,0� . �3.15�

This requirement is necessary to avoid undesirable thin-
interface corrections in the matching to the free-boundary
problem �see Refs. �8,37�� and to adjust surface tensions in-
dependently of the phase diagram �see Sec. III C 4�, and is
hence important �38�. Replacing 1− pi by pj and then ex-
changing the indices i and j, we can rewrite the requirement
in the form

gj�pi,pj,0� = 1 − gi�pi,pj,0� , �3.16�

which can be understood as the analog of pj =1− pi for pk
=0. This latter form �Eq. �3.16�� will be used below. We also
impose zero slope on all sides of the Gibbs simplex in ac-
cordance with Eq. �3.9a�, but not convexity, for reasons
which will soon become apparent.

The lowest-order polynomial in the phase fields that sat-
isfies all the above requirements is fifth order and unique at
this order,

gi =
pi

2

4

15�1 − pi��1 + pi − �pk − pj�2� + pi�9pi

2 − 5�� ,

�3.17�

where as usual i , j ,k are all different; it is plotted in Fig. 4.
Remarkably enough, this function reduces to the polynomial
pi

3�10−15pi+6pi
2� on the i-j and i-k interfaces when the con-

straint pi+ pj + pk=1 is taken into account, which happens to
be proportional to the tilting function used in the available
quantitative models of single-phase solidification �7,8�.

We then couple the phase fields to the concentration c and
the temperature T through the functions gi�p��: We use these
functions to interpolate between three free-energy parabolic
wells in concentration

fc,i = �c − Ai�2/2 + Bi �3.18�

for the three phases i=� ,� ,L, characterized by pi=gi=1 and
pj =gj = pk=gk=0,

fc =
1

2�c − �
i

Ai�T�gi�p���2
+ �

i

Bi�T�gi�p�� . �3.19�

The Ai�T� and Bi�T� define the equilibrium phase diagram, as
discussed in Sec. III C 2.

With fc specified, we can now write down an explicit
expression for the concentration current. We define a dimen-
sionless chemical potential,

� =
1

X

�F

�c
=

�fc

�c
= c − �

i

Ai�T�gi�p�� , �3.20�

so that Eq. �3.8� becomes

FIG. 3. �Color online� Triple-well potential, visualized as a sur-
face over the Gibbs simplex. The black lines mark the borders of
the Gibbs simplex, drawn on the surface; for this function, they also
coincide with the trajectory of the equilibrium interface solutions.

FIG. 4. �Color online� Elementary tilting function gi, visualized
over the Gibbs simplex. The i vertex is to the right.
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J� = − D�p���� � , �3.21�

where D�p��=M�p��X is a phase-dependent diffusivity. Note
that the fc in Eq. �3.19� or �3.20� satisfies the stability con-
dition of Eq. �3.10�.

Equation �3.9a� for no third-phase absorption also holds
for fc, since each of the gi satisfies this condition by con-
struction. However, no general statement can be made about
the convexity of fc, because it depends on the form of gi and
on the values of Ai, Bi, and c. It can be shown that for special
choices of the Ai and Bi, the second derivatives of fc with
respect to the third phase can be made to vanish throughout
all borders of the Gibbs simplex. In any case, the other com-
ponents of the free-energy density will ensure global convex-
ity and hence stability for sufficiently small values of the
ratio X /H. The solutions can always be stabilized by adding
“obstacle” terms in the free energy, as discussed in Sec. III H
below; however, our experience is that, whenever an insta-
bility occurs, the model is anyway too far from the thin-
interface limit to represent the correct free-boundary prob-
lem, so that the convexity of fc is not an issue in practice.

C. Equilibrium solutions

In order to illustrate how the evolution equations of the
model are derived and to clarify the reasons for the particular
choice of Eq. �3.19� for fc, we derive the stationary solution
for a planar interface. We check that this solution satisfies the
conditions of thermodynamic equilibrium, compute its sur-
face tension, and obtain the relationship between the coeffi-
cients Ai�T� and Bi�T� and the equilibrium phase diagram.

1. Evolution equations

We first write down explicitly the evolution equations for
the minimal model, whose building blocks have been derived
above. For the phase fields, we take the functional derivative
of the free energy with respect to each phase field pi accord-
ing to Eq. �3.5�, where the component of the free-energy
density fgrad is given by Eq. �3.11�, fp= fTW by Eq. �3.13�
with Eq. �3.14�, and fc by Eq. �3.19� with Eq. �3.17�. Since c
and � are related, we can eliminate one in order to reduce the
number of variables; we choose to eliminate c. We obtain

��p��
�pi

�t
= W2�2pi +

2

3�− 2pi�1 − pi��1 − 2pi� + �
j�i

pj�1 − pj�


�1 − 2pj�� + �̃�
j
� �gj

�pi
�

p�+p�+pL=1
��Aj − Bj� ∀ i ,

�3.22�

��

�t
= �� · �D�p���� �� − �

i

Ai
�gi�p��

�t
, �3.23�

where we have defined W=	K /H, �̃=X /H, and

� �gi

�pi
�

p�+p�+pL=1
=

5

2
pi��pk − pj�2�3pi − 2�

+ �1 − pi�2�3pi + 2�� , �3.24�

� �gj

�pi
�

p�+p�+pL=1
= −

1

2
� �gi

�pi
�

p�+p�+pL=1

+
15

2
pj

2�1 − pj��pk − pi� , �3.25�

where different indices represent different phases. The evo-
lution equation for � is a diffusion equation with a source
term that reflects the redistribution of solute at advancing
interfaces.

Next, consider a generic i-j interface. Since we have
taken care that our free-energy functional, if not all of its
components, satisfies Eqs. �3.9� for pk=0,1 �k� i , j�, the
phase field that corresponds to the third phase k vanishes,
pk=0. Therefore, the sum rule of Eq. �3.1� can be used to
eliminate pj through pj =1− pi �and hence gj in terms of gi,
Eq. �3.16�, gk�pk=0�=0�, so that we are left with a single
phase field pi as desired. Equations �3.22� and �3.23� thus
yield �39�

��p��
�pi

�t
= W2�2pi − 2pi�1 − pi��1 − 2pi�

− 15�̃pi
2�1 − pi�2���Aj − Ai� − �Bj − Bi�� ,

�3.26�

��

�t
= �� · �D�p���� �� + �Aj − Ai�

�gi�pk = 0�
�t

, �3.27�

where gi�pk=0� is evaluated using pj =1− pi.

2. Stationary solutions

We search for stationary planar interface solutions of Eqs.
�3.26� and �3.27�, that is, solutions that have vanishing time
derivatives but vary in space along a single coordinate x and
connect bulk phases i �pi�x=−��=1� and j �pi�x= +��=0�.
From the condition �� /�t=0 we obtain that the chemical
potential �, if bounded, must be a constant in space. This is
of course one of the conditions of thermodynamic equilib-
rium, and we hence denote this constant by �eq

ij . Its value is
fixed by the second requirement, �pi /�t=0, through a solv-
ability condition for the stationary, one-dimensional version
of Eq. �3.26�,

W2�xxpi = 2pi�1 − pi��1 − 2pi�

+ 15�̃pi
2�1 − pi�2���Aj − Ai� − �Bj − Bi��

= −
dV�pi�

dpi
, �3.28�

where the second equality defines a “potential” V�pi�
= −pi

2�1− pi�2− ��̃ /2�pi
3�10−15pi+6pi

2����Aj −Ai�− �Bj −Bi��
up to a constant. This notation refers to the well-known
“particle-on-a-hill” analogy, in which Eq. �3.28� is inter-
preted as an equation of motion with time coordinate x for a
point particle of position pi that moves in the potential V.
Since there is no dissipative term, a solution to this equation
that connects pi=0 and pi=1 exists if and only if V�0�
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=V�1�, which requires the squared bracket ���Aj −Ai�− �Bj

−Bi�� to vanish and hence yields

�eq
ij �T� =

Bj�T� − Bi�T�
Aj�T� − Ai�T�

. �3.29�

The phase-field profile obtained with the remaining term of
Eq. �3.28� and the given boundary conditions reads

pi�x� =
1

2�1 − tanh� x − x0

	2W
�� , �3.30�

the desired solution for an interface centered on x0. Equa-
tions �3.29� and �3.30� together with the definition of � �Eq.
�3.20�� and the condition �=�eq

ij determine the concentration
profile,

c�x� = �eq
ij + Aigi�p��x�� + Ajgj�p��x�� . �3.31�

Taking the limits x→ ±�, we find the concentration of phase
i in equilibrium with phase j,

ci
ij = Ai +

Bj − Bi

Aj − Ai
. �3.32�

By choosing appropriate functions Ai�T� and Bi�T�, we can
reproduce any phase diagram as characterized by its coexist-
ence lines ci

ij�T�. Since only free energy or concentration
differences between phases are relevant �note the form of the
square bracket in Eqs. �3.26� or �3.28��, we may choose AL
=BL=0 without loss of generality. With the remaining four
functions of T we can fit two liquidus and two solidus lines;
the solid-solid equilibrium is then constrained, but this is
irrelevant for the one-sided case, for which the solid has no
dynamics.

3. Relation to thermodynamics

To obtain the thermodynamic interpretation of the above
solvability condition V�0�=V�1�, note that the two terms in
the middle of Eq. �3.28� correspond to �1/2��d /dpi�fp�pi ,1

− pi ,0� and �1/2��̃�� /�pi�fc�pi ,1− pi ,0�, respectively �39�.
The second is a partial derivative because fc also depends on
pi implicitly through c�pi� �Eq. �3.31��; its total derivative is
�d /dpi�fc= �� /�pi�fc+ ��fc /�c��dc /dpi�, where �fc /�c=� is
the constant �eq

ij in equilibrium. Therefore, this second term

can also be written as �1/2��̃�d /dpi��fc−�c�. By formal in-
tegration of the second equality in Eq. �3.28� we thus obtain
�for constant ��

V�pi� = − 1
2 
fp�pi,1 − pi,0� + �̃�fc�pi,1 − pi,0,c� − �eq

ij c��

�3.33�

up to a constant, to be compared to the �dimensional� grand
potential density,

� = f − X�c = Kfgrad + Hfp + X�fc − �c� = Kfgrad − 2HV�pi� ,

�3.34�

where the last equality holds for constant � and we recall

that �̃=X /H. Since fgrad vanishes in bulk phases, the condi-

tion V�0�=V�1� implies that the grand potential density be
equal in the two coexisting phases, ��0�=��1�=�eq

ij . We
hence see that the two conditions for the existence of a sta-
tionary solution correspond to equality of chemical and
grand potentials. Since fp takes the same value in all bulk
phases, we note that the equality of grand potentials simply
requires that of fc−�c. The latter, together with a constant
�=�fc /�c, is what is usually represented graphically in the
well-known common tangent construction, illustrated in Fig.
5.

4. Surface tension and choice of fc

At this point, it is important to realize that the conditions
of stationarity, or, equivalently, the common tangent con-
struction, only require the grand potential � and the quantity
fc−�c to take equal values at both sides of the interface.
However, they both generally vary through it, which means
that their surface excesses are typically finite. The surface
excess of the grand potential, for instance, gives the surface
tension,

�ij = �
−�

+�


��p��x�,c�x�� − �eq
ij �dx . �3.35�

The particularity of our model can now be understood: At
equilibrium, �=�eq

ij happens to make the square brackets and

hence the whole term proportional to �̃ in Eq. �3.28� vanish
for any value of pi, i.e., throughout the whole interface. This
decouples the phase and chemical potential fields at equilib-
rium, as emphasized in the introduction. More precisely, the
equilibrium phase-field profile �Eq. �3.30�� balances the
derivatives of Kfgrad and Hfp only; moreover, since we

saw that the term proportional to �̃ corresponds to

�1/2��̃�� /�pi�fc�pi ,1− pi ,0�= �1/2��̃�d /dpi��fc−�c�, the
fact that it vanishes means that fc−�c is constant throughout
the interface, i.e., it has no surface excess. Therefore, it does
not contribute to the surface tension, which again is deter-

FIG. 5. The fc part of the free-energy density is an interpolation
between three parabolic bulk phase free energies; the equilibrium
compositions and chemical potentials can be obtained by the com-
mon tangent construction illustrated by the straight, dashed lines for
both solid-liquid equilibria. This construction corresponds to the
conditions of equal chemical and grand potential in the two coex-
isting phases.
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mined purely by the remaining Kfgrad+Hfp. We obtain

�ij =
	2

3
	KH =

	2

3
WH . �3.36�

To better realize the importance of this point, it is useful to
consider the roles of the coefficients K, H, and X in the free
energy. X is the dimensional prefactor of the concentration-
dependent terms and hence sets the magnitude of the ther-
modynamic driving forces, which is a macroscopic, physi-
cally measurable quantity. In contrast, K and H can be
adjusted in order to achieve a desired surface tension and
interface thickness. In our model, this is particularly straight-
forward since �ij does not depend on X. The interface thick-
ness W can be varied for computational convenience while
keeping the measured value for �ij just by fitting H �see Eq.
�3.36��, and, still, X can be chosen independently to match its
measured value. The capillary lengths di are proportional to
the ratio of the surface tension to the driving forces �di

��iL/X�. Since �ij �WH, di�WH /X=W / �̃, a scaling that
will be confirmed by the thin-interface analysis given in Sec.

III D. This means that scaling up simultaneously W and �̃
will leave the physics invariant, as desired.

For a generic model, in contrast, the terms proportional to

�̃ do not vanish in the equation of motion for pi nor in the
expression for the grand potential. Therefore, the phase and
chemical potential fields do not decouple; both the phase-
field profile �and therefore its thickness W� and the surface
tension depend on the three constants K, H, and X, and no
general analytic solution exists. In the expression for the sur-
face tension, there is an extra contribution coming from fc,
which, on dimensional grounds, should be proportional to
WX. Therefore, changing W while keeping the surface ten-
sion and driving forces fixed is far more complicated. Fur-
thermore, the coupling to fc will introduce some dependence
of the surface tension and capillary lengths on the composi-
tion and temperature. While such dependencies may reflect
some physical effects, it is difficult to control them properly
since they will be blown up as the interface thickness W is
scaled up to allow for simulations.

The advantage of our model comes from the fact that the
partial derivative of fc with respect to any of the two phase
fields present on an interface, ���fc /�pi��p�+p�+pL=1,pk=0, van-
ishes at equilibrium for any value of pi, i.e., thanks to the
particular fc used. More specifically, we achieve this through
an fc whose partial derivative splits in �i� a factor which
depends on pi only and �ii� one which depends on � only, but
none on c. In turn, for the particular type of polynomial
construction of fc we use, �i� can be traced back to the sym-
metry of the gi’s �Eq. �3.16��, and �ii� to the fact that the
second derivatives of the bulk-phase free energies with re-
spect to concentration are constant and all equal. The sym-
metry of the gi’s can be understood physically as ensuring
that fc depends only on relative differences of free energy
and concentration between any pair of phases i and j, for any
phase fraction of the two phases pi and 1− pi. This is re-
flected in the expression in square brackets in Eqs. �3.26� or
�3.28�. Apart from this symmetry, the gi are arbitrary, phe-
nomenological phase-field interpolation functions.

In contrast, the free energies of the different bulk phases
are, in principle, functions that are fixed for a given alloy
system and cannot be freely adjusted. Our free energy is
therefore an approximation, justified by the fact that it yields
the desired phase diagram. However, apart from the phase
diagram, the free energy also determines the latent heats, as
we shall outline below, and these enter the capillary lengths
�Eq. �2.9��; moreover, due to the Gibbs-Thomson effect or to
kinetics, the concentrations at both sides of a solid-liquid
interface can deviate from the prediction of the phase dia-
gram at a given temperature, which affects the amount of
impurity actually rejected. As we shall see, our approxima-
tion for fc constrains the capillary lengths and slightly modi-
fies the impurity redistribution; however, the first is compat-
ible with the experimentally measured values, and the second
is completely negligible for low-speed solidification. To get
rid of this approximation, it should be possible to use an
approach recently introduced for dilute alloys in which inter-
nal energy and entropy are interpolated by two different
functions �8�. However, the generalization of this method to
two-phase solidification, that is, the introduction of two dif-
ferent sets of gi functions, is outside the scope of the present
paper.

D. Mapping of each solid-liquid interface
to single-phase solidification

Here, we address the behavior of our model for small but
finite values of the interface thickness W. It would be very
interesting to investigate this behavior including the triple
junctions; however, the problem there is quite involved,
since two independent phase fields and the chemical poten-
tial vary rapidly and are all coupled. Therefore, we limit
ourselves to an analysis of the interfaces, taking advantage of
a mapping to single-phase solidification. The behavior of the
trijunction points will be investigated numerically and dis-
cussed in detail in Sec. IV.

We are actually interested in solid-liquid interfaces, since
the solid-solid one has no dynamics. We hence set j=L in
Eqs. �3.26� and �3.27�, where now i stands for either � or �.
To proceed, we rewrite the expression ��AL−Ai�− �BL−Bi�
thus appearing in Eq. �3.26� as �AL−Ai���−�eq

iL�, where
�eq

iL = �BL−Bi� / �AL−Ai� is the dimensionless chemical poten-
tial for coexistence of the solid i and the liquid as given by
Eq. �3.29��. It hence becomes apparent that the driving force,

−15�̃pi
2�1− pi�2�AL−Ai���−�eq

iL�, is proportional to a devia-
tion from equilibrium. Let us first consider isothermal solidi-
fication, so that Ai�T�, AL�T� and �eq

iL�T� are just constants.
Then, the evolution equations can be rewritten in terms of a
new variable

u = �� − �eq
iL�/�AL − Ai� , �3.37�

which measures departure from equilibrium on the i-L inter-
face, and a phase field �i
2pi−1, which takes the values +1
and −1 in the i solid and liquid phases, respectively. We
obtain
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��p��
��i

�t
= W2�2�i + �i�1 − �i

2� −
15

8
�AL − Ai�2�̃�1 − �i

2�2u

�3.38�

�u

�t
= �� · �D�p���� u� +

�gi�pj = 0�
�t

, �3.39�

where j now denotes the other �absent� solid phase.
With a constant relaxation time, ��p��
�0, and a constant

diffusivity, D�p��
D, the above equations constitute pre-
cisely the phase-field model for the solidification of a pure
substance treated by Karma and Rappel, if the combination

�15/8��AL−Ai�2�̃ is identified with the coupling constant �
used in Ref. �7�; more precisely, we recover the variational
version of their model. Therefore, we can use their results on
its thin-interface behavior, i.e., the behavior for values of W
much smaller than a typical length scale of the microstruc-
tural pattern. This is described by an effective free boundary
problem for the field u. Undoing the change of variables of
Eq. �3.37� and applying Eq. �3.20�, we can compare it with
the desired free-boundary problem of Eqs. �2.5�.

We find that the Gibbs-Thomson boundary condition, Eq.
�2.5c�, is satisfied, with capillary lengths and kinetic coeffi-
cients related to the phase-field parameters by

di = a1
W

�AL − Ai��̃
, �3.40�

�i = a1� �0

�AL − Ai��̃W
− a2�AL − Ai�

W

D� , �3.41�

where a1=	2/3 and a2=0.7464 are numerical constants re-
lated, but not equal to those of Karma and Rappel �40�. We
note that, in general, the expressions for the capillary lengths
and the kinetic coefficients are not the same for the two
solid-liquid interfaces, but depend on the Ai’s, and hence on
concentration differences �recall Eq. �3.19��. As anticipated,

the parameter �̃ controls the ratio of the interface thickness
W to the smallest physical length scales, the capillary lengths
di. The former can be varied while keeping the latter fixed

just by changing �̃ accordingly. For quantitative output, the

simulation results should hence become independent of �̃ for

�̃ small enough. This will be checked for our model in Sec.
IV. Note that, as discussed in detail in Refs. �7,8�, conver-

gence may be achieved for �̃ much larger than 1, since it is
only assumed that W is much smaller than a typical length
scale of the pattern, which, in turn, is usually much larger
than di.

The diffusion equation, Eq. �2.5a�, is also satisfied. As for
the mass conservation condition, we find

Dn̂ · ���� c�+ − ��� c�−� = �Ai − AL�vn, �3.42�

where ��� c�+ and ��� c�− denote the concentration gradients on
the liquid ��� and the solid ��� side of the interface, respec-
tively. There are two differences with the Stefan condition of
the desired FBP, Eq. �2.5b�. Obviously, in the one-sided case

the diffusion flux on the solid side vanishes, and hence the
second term on the left-hand side is absent. We address this
case in Sec. III G. But there is a second difference: The right-
hand side of Eq. �3.42� corresponds to the right-hand side of
Eq. �2.5b� only for constant concentration gaps, ki=1. To see
this, substitute Eq. �2.2�, absorbing its temperature depen-
dence in the phase-diagram concentration gaps ci

iL−cL
iL, into

Eq. �2.5b�. This yields Dn̂ ·�� c=vn�ci
iL−cL

iL± �1−ki��di�
+�ivn��. The term ci

iL−cL
iL corresponds to our Ai−AL �see Eq.

�3.32��, but the other terms are lacking. This is due to the use
of equal �2fc,i /�c2 for all three bulk-phase free-energy func-
tions fc,i �Eq. �3.18��, as announced in Sec. III C: When the
chemical potential is shifted from its temperature-dependent
equilibrium value for a flat interface, the corresponding shifts
in concentration are determined by �� /�c=�2fc /�c2 and are
hence the same at both sides of each solid-liquid interface.
This explains why our model displays the right deviations of
c from its phase-diagram value at the liquid side �correct
Gibbs-Thomson condition, Eq. �2.5c��, but does not reflect
them in the concentration gaps that appear in the impurity
rejection. However, the magnitude of the missing terms is
small, since the departure from the equilibrium phase dia-
gram is very small in slow solidification. The �ivn term is
usually neglected and will be set to zero in our simulations;
as for di�, a typical curvature � is given by the inverse of the
length scale of the microstructural pattern. In turn, this length

scale goes as 	d̄lD, where lD=D /Vp is the diffusion length.

Therefore, di��	d̄ / lD. For typical experimental values of

slow solidification d̄ / lD�10−4–10−5, so this correction can
be safely neglected.

The other constraint coming from the equal �2fc,i /�c2 is
reflected in Eq. �3.40�. The ratio of the capillary lengths is
fixed to

d�

d�

=
�A� − AL�
�A� − AL�

. �3.43�

This relation can be understood from the following thermo-
dynamic considerations: The latent heats of the two solid-
liquid phase transformation can be evaluated from the bulk-
phase free energies f i of �Eq. �3.18�� by Li=T�sL−si�, where
si=−���f i /�T��c is the specific entropy of phase i �and simi-
larly for the liquid�. Making use of the conditions of equal
chemical and grand potentials, we find Li= ����eq

iL /�T��c�ci
iL

−cL
iL�= ���eq

iL /�c��ci
iL−cL

iL� /mi. Since for both solid–liquid
equilibria ���eq

iL /�c�= ��2fc /�c2�eq are the same, we find
L� /L�= ��c�

�L−cL
�L� / �c�

�L−cL
�L���m� /m��. Using the definition

of the capillary lengths, Eq. �2.9�, this yields

d�

d�

=
��L

��L
� c�

�L − cL
�L

c�
�L − cL

�L� =
��L

��L
�A� − AL

A� − AL
� , �3.44�

where the second equality makes use of Eq. �3.32�. Since, in
our minimal model, ��L=��L, Eq. �3.43� follows. In general,
the ratio depends on the temperature through the ci

ij�T�. Near
the eutectic point where solidification occurs for small un-
dercoolings,
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d�

d�

�
��L

��L
� c�

c�
� . �3.45�

This latter relation is satisfied by the reference alloy of our
present study, CBr4-C2Cl6, to within experimental accuracy.

Note that these lacking terms in the solute rejection and
the restriction on the ratio of the capillary lengths do not vary
with the interface thickness, but are zeroth-order corrections.
They are not introduced by the diffuseness of the interfaces,
but by our approximation for the free energy, which can be
replaced by more sophisticated choices if needed, as already
discussed at the end of Sec. III C 4.

Let us conclude this section with a comment on direc-
tional solidification, where the assumption of constant Ai�T�
and AL�T� is no longer valid. If we still want to apply the
mapping to single-phase solidification, we must neglect the
temperature variation of Ai�T� and AL�T� within the region
where the mapping holds. The scale of variation of the tem-
perature is set by the thermal lengths lT

i defined in Sec. II,
whereas the mapping region needs to extend over at least a
few times W in order for the thin-interface behavior of the
model to be well defined �and the results of Ref. �7� to ap-
ply�. Because these results already assume that the length
scale of the pattern is much larger than W, and taking into
account that the thermal lengths are typically far larger than
this pattern length scale, the condition W� lT

i is automati-
cally met. Therefore, even in presence of a temperature gra-
dient, the results of Eqs. �3.40� and �3.41� apply, with the
value of T �and hence Ai�T� and AL�T�� taken in the center of
the interface.

E. Independent kinetic coefficients

The relation between the phase-field parameters �0, �̃, and
W and the interface kinetic coefficients of the FBP is given
by Eq. �3.41�, where �AL−Ai�= �cL

iL−ci
iL� are set by the phase

diagram, D is a materials parameter, and a1 and a2 are nu-
merical constants. Given a desired accuracy as fixed by W or,

equivalently, �̃ �linked by Eq. �3.40��, the only free param-
eter left is the phase-field relaxation time �0. However, we
need at least two free parameters in the model, since there
are two kinetic coefficients that are a priori independent. In
the formulation of Ref. �31� with a double-obstacle potential,
this is implemented by specifying different relaxation times
�ij for each binary �i-j� phase transformation. In our formu-
lation with a smooth free energy functional, this is not pos-
sible, as shown in Appendix A. Instead, we achieve indepen-
dent kinetic coefficients by keeping the same relaxation time
� for all possible transformations, but making � dependent on
the phase fields.

In order to maintain the mapping to the model of Ref. �7�
on the individual interfaces, � must be a constant along those
interfaces. A function taking different, constant values on all
three interfaces necessarily has discontinuity lines inside the
Gibbs simplex. Here, we are mainly interested in controlling
the dynamics of the solid-liquid interfaces, since, in the final
one-sided model, the solid-solid interface does not move.
Therefore, we use a function that takes constant values ���

and ��� on the two solid-liquid interfaces only, and interpo-

lates smoothly between them inside the Gibbs simplex,

��p�� = ��̄ +
�� − ��

2

�p� − p��
�p� + p��

if pL � 1,

�̄ if pL = 1,
� �3.46�

where �̄= ���+��� /2. Note that the only discontinuity is on
the vertex pL=1. It did not cause any problems in practice,
but, if needed, it could be smoothed out in a small neighbor-
hood of the vertex without inducing appreciable errors in the
calculations.

As a result of this procedure, the two kinetic coefficients,

�i = a1� �i

�AL − Ai��̃W
− a2�AL − Ai�

W

D� , �3.47�

can now be adjusted independently by choosing the two con-
stants �� and ��.

F. Nonvariational model

It has been shown for phase-field models of single-phase
solidification �7,37� that it is often advantageous to introduce
an additional degree of freedom by switching to a nonvaria-
tional formulation, which exploits the two different roles of
the tilting functions gi: In the evolution equations for the
phase fields, Eq. �3.22�, they favor one bulk phase over the
other; in the one for the chemical potential �, Eq. �3.23�,
they constitute a source or sink of �, which corresponds to
impurity rejection or adsorption, respectively. The gi need to
satisfy certain common requirements for both of their roles
�although for different reasons�, namely to interpolate from 0
to 1 as pi goes from 0 to 1 and to be antisymmetric with
respect to the point pi= pj =1/2 on i-j interfaces �Eq. �3.15��.
However, the requirement of flatness, Eq. �3.9a�, constrains
only the derivatives with respect to the phase fields, which
do not enter the evolution equation of the chemical potential
�. Therefore, we can switch to a different chemical-
potential-like variable,

� = c − �
i

Aihi�p�� , �3.48�

which amounts to replace the gi in Eq. �3.20� by functions hi
that have the same limits and symmetries as the gi, but do not
necessarily satisfy Eq. �3.9a�. This implies that the �tgi in Eq.
�3.23� are replaced by �thi. Furthermore, a different expres-
sion for fc must be used to derive the phase-field equations,
namely

fc = �
i

gi�p���Bi�T� − �Ai�T�� , �3.49�

which is the form given in our preliminary account �32�. The
mapping to single-phase solidification can be repeated. For
the choice hi= pi, the result corresponds exactly to the iso-
thermal variational model of Ref. �7�; as a result, Eqs. �3.40�
and �3.47� hold again, with the same value of a1 as before,
but now with a2=1.175.

The choice hi�p��= pi is quite advantageous for simula-
tions, because the source term in Eq. �3.23� is less peaked
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inside the interface than for the fifth-order polynomial gi�p��,
which makes it possible to use a coarser discretization. This
results in a considerable gain in computational speed, as dis-
cussed in detail in Ref. �7�.

G. One-sided model

We now address the one-sided case, for which the solute
diffusivity in the solids is neglected compared to that of the
liquid D. This is much more realistic for alloy solidification
than the symmetric model considered up to now. We hence
set

D�p�� = Dq�pL� , �3.50�

with a function q�pL� that interpolates between 1 in the liquid
and 0 in the solid.

This seemingly small change has important consequences.
We already mentioned in Sec. II that a strictly vanishing
solid diffusivity prevents solid-solid interfaces to move. For
the solid-liquid interfaces, the introduction of a phase-
dependent diffusivity breaks the symmetry of the impurity
diffusion between solid and liquid. Furthermore, the varia-
tion of the diffusivity D�p�� through the diffuse solid-liquid
interfaces needs to be considered in the asymptotic analysis,
which becomes quite involved �8,37�; we will only resume
the most important points here.

It turns out that, in general, the effective free-boundary
problem obtained from the thin-interface analysis displays
several terms that are not present in the original one and that
scale with the interface thickness W. As explained in detail in
Ref. �8�, in analogy with the thermodynamics of diffuse in-
terfaces these terms can be linked to “surface excesses,”
which are the integral through the interface of the excess of a
quantity, where excess means the difference of its actual
value at a point inside the diffuse interface region and its
reference bulk value at the nearest side of the interface �the
bulk values in the solid and the liquid might differ�.

Let us consider the evolution equation for the chemical
potential on the solid-liquid interfaces, Eq. �3.27�, where the
gi were replaced by hi as explained in Sec. III F. Three rel-
evant surface excesses have been identified. The first is that
of the “source function” hi�p��. Since it determines the equi-
librium solute profile, an excess in this quantity confers a net
impurity content to the interface �solute adsorption at the
interface�. The quantity of adsorbed solute increases with the
area of the interface, which modifies the mass conservation
condition, Eq. �2.5b�, at moving curved interfaces �interface
stretching�. For the one-sided model, we have two more sur-
face excesses, that of diffusivity D�p��, which leads to solute
diffusion along the interface �surface diffusion� and thus also
modifies the mass conservation condition, and that of the
ratio hi�p�� /D�p��, which generates the well-known solute-
trapping effect and shows up in the modified FBP in the form
of a jump of the chemical potential through the interface �8�.

For the symmetric model in which D�p�� is actually a con-
stant, the choice of hi�p�� odd with respect to the center of the
interface ensures both the absence of interface stretching and
of solute trapping. However, for the one-sided case, one must
eliminate surface diffusion too. The easiest way to do this is

to also choose D�p�� odd. The simplest possible interpolation,
q�pL�= pL, already satisfies this condition, and will be
adopted in the following. The problem, however, is then that
the surface excess of hi�p�� /D�p�� does not vanish, so that
solute trapping is present.

With only two adjustable interpolation functions, one can
generally not eliminate all three undesired surface excesses;
more freedom is needed in the formulation of the model. One
way to obtain this is to add a term counterbalancing one of
the three effects, while choosing hi�p�� and D�p�� to eliminate
the other two. Here, we generalize to two-phase solidifica-
tion one possible such term, originally introduced for single-
phase solidification in Ref. �8�. We add to the solute current
a phenomenological contribution, an “antitrapping current”
which drives the otherwise trapped solute into the liquid
phase.

By analogy with Ref. �8�, its form on each solid-liquid
interface is easy to determine. It is directed parallel to the
outward normal of the solid-liquid interface, and its magni-
tude is proportional to the interface thickness W and the in-
tensity of the solute release which caused the trapping, �AL

−Ai��hi /�t. How to interpolate this current between the two
solid-liquid interfaces is less clear, since no asymptotic
analysis or mapping to single-phase solidification is available
near a trijunction. We numerically tested various possibilities
for interpolations, and chose the one that yielded the best
convergence properties. It can be heuristically motivated as
follows: The outward normal to each phase is given by n̂i=

−�� pi / ��� pi�. Let us consider n̂�. On the �-liquid interface, it
is antiparallel to n̂L, since p�=1− pL; in contrast, on the �
-� interface it is antiparallel to n̂�, since p�=1− p�. Upon
growth, the � front advances along the direction of n̂� with a
speed proportional to �p� /�t. The antitrapping current should
always be directed towards the liquid, even if the solid
formed is a “mixture” of both solid phases as happens in a
trijunction; therefore, we choose to direct it along n̂L
throughout the whole system. However, only the component
of the growth speed directed toward the liquid should con-
tribute to the magnitude of the antitrapping current; there-
fore, we multiply the source strength for each phase by the
scalar product −n̂L · n̂i, which is equal to 1 on the solid-liquid
interfaces, but smaller than 1 inside the trijunction.

The total concentration current thus reads

J� = − DpL�� � + 2aWn̂L �
i=�,�

�AL − Ai��− n̂L · n̂i�
�pi

�t
,

�3.51�

where 2a is a prefactor to be adjusted, and we have taken
hi= pi. Indeed, the particular form of the antitrapping current
given here is to be used only in conjunction with the simplest
choices both for the diffusivity, as given in Eq. �3.50� with
q�pL�= pL, and the source function, hi= pi; see Ref. �8� for
further details.

With this concentration current �Eq. �3.51��, we rederive
Eq. �3.39�,
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�u

�t
= D�� · �1 − �i

2
�� u� +

1

2

��i

�t
+ aW�� · � ��i

�t

�� �i

��� �i�
� .

�3.52�

We recover the quantitative phase-field model for one-sided
solidification with a constant concentration gap given in Ref.
�8�. Again, this has the advantage that we do not need to
analyze the small-W behavior. From Ref. �8� we learn that
the results of Eqs. �3.40� and �3.47� for di and �i and the
discussion thereafter still apply, and that a=1/ �2	2� is the
value for which the term exactly counterbalances solute trap-
ping. Interestingly, the values of a1 and a2 stay also the same
as given before, for reasons explained in Ref. �8�. The fact
that the only quantitative model for one-sided solidification
available so far uses hi= pi and that this choice enables one to
recover the same numerical values for a1 and a2 as in the
case of constant diffusivity is obviously another reason, on
top of its lower numerical cost, to use hi= pi instead of hi
=gi.

H. Unequal surface tensions

As we have seen in Sec. III C 4, thanks to the particular
form of our coupling fc between phase and concentration
fields, the surface tension, or equilibrium surface excess of
the grand potential f −�c, reduces to the surface excess of
the remaining two terms, fgrad and fp. Since so far both fgrad
and fp= fTW are symmetric with respect to the exchange of
any two phases, the surface tensions of all interfaces are
equal. In order to treat unequal surface tensions, this symme-
try needs to be broken by modifying either of these two
terms. In multi-phase-field models, different gradient ener-
gies are used for each interface �30�. In our approach, we
want to maintain at least the condition of flatness, Eq. �3.9a�,
and it turns out to be easier to modify the potential part �see
Appendix B for a detailed discussion�.

We add a term fsaddle to this potential part,

fp = fTW + fsaddle, �3.53�

fsaddle = �
i

fsaddle,i. �3.54�

fsaddle is meant to change the height of the saddle points on
each binary interface by a tunable, different amount, through
the elementary functions fsaddle,i, which, in turn, should shift
the saddle of fTW separating phases j and k �i� j ,k�. There-
fore, fsaddle,i should vanish on interfaces other than the j-k
one, and respect the valley character of all interfaces.

A function positive everywhere that vanishes on all sides
automatically satisfies the latter two requirements, but obvi-
ously does not shift any saddle. However, it will be useful
later on. The simplest such function is

fobs = p�
2 p�

2 pL
2 , �3.55�

which corresponds to an elevation �obstacle� on the triple
point and outside the Gibbs simplex. By dropping the pi

2

factor we get a function which actually raises the saddle on
the j-k interface and still vanishes and has valleys on the

others, but which is not flat on the j-k interface in the direc-
tion perpendicular to it. We hence make the ansatz fsaddle,i

= pj
2pk

2 f̃saddle,i�p�� and impose flatness at pi=0. The resulting

condition for f̃saddle,i reads 3��� f̃saddle /�pi��p�+p�+pL=1

=2 f̃saddle / �pjpk� at pi=0, so that the simplest choice turns out

to be f̃saddle,i=2pjpk+3pi. This actually corresponds to a
function that is small everywhere but in the neighborhood of
the j-k saddle, where it is maximal. Therefore, its j-k side is
flat but concave. To correct this concavity, we add to it the
obstacle function fobs given above,

fsaddle,i = aipj
2pk

2�2pjpk + 3pi + bpi
2� , �3.56�

through the term in b. This composite function now has a
valley that also runs along the j-k side as long as b�9/2.
The larger b, the closer the maximum of this function is to
the triple point and the further from the j-k saddle. In Fig. 6,
we show this function for b=12.

On any purely binary interface pi=0, the whole function
fsaddle reduces to 2aip

3�1− p�3, where p is any of the other
phase fields. If we now put together the triple-well potential
and the saddle functions, we find a free-energy density fp
= fTW+ fsaddle=2p2�1− p�2�1+aip�1− p�� on such interfaces.

It is important to note that this modification does not af-
fect the coupling between phase fields and concentration, and
hence all the equilibrium compositions and the chemical po-
tential remain the same as in the minimal model. In contrast,
the surface tension is modified. Making use of the equiparti-
tion relation �i.e., the fact that fgrad= fTW for an equilibrium
interface solution�, we find the total surface excess per unit
area of fgrad+ fTW to be

� jk = 2	2WH�
0

1

p�1 − p�	1 + aip�1 − p�dp, i � j,k .

�3.57�

Of course, for ai=0 the result reduces to Eq. �3.36�. For ai
�0, it is straightforward to evaluate this integral numerically
and to tune the different surface tensions by using different
ai. However, the equilibrium profile of a j-k interface whose

FIG. 6. �Color online� Function used to lift the saddle between
two phases and hence alter the surface tension. It vanishes on the
other two interfaces. The position and strength of the hill in
the middle are controlled by the parameter b in Eq. �3.56� �here,
b=12�.
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saddle has been shifted by a finite ai is not anymore the usual
hyperbolic tangent solution of Eq. �3.30�, but a kink-shaped
profile that must be calculated numerically. Since the equi-
librium profile is the starting point for the entire asymptotic
analysis, all calculations, and in particular the determination
of the numerical constants a1 and a2 that appear in Eqs.
�3.40� and �3.47�, must be repeated for this profile, taking
also into account the extra terms that are generated by fsaddle
in the equations of motion. Similarly, the form of the anti-
trapping current needs to be adapted, using the methods of
Ref. �8�. While this procedure is, in principle, straightfor-
ward, it is outside the scope of the present paper.

At this point, it is important to realize that the two solid-
liquid surface tensions in many eutectic alloy systems are
quite similar, and only the solid-solid surface tension is
markedly different. This is, for instance, the case in CBr4
-C2Cl6. Therefore, using equal �-liquid and �-liquid surface
tensions is usually a good approximation; only the solid-
solid surface tension needs to be modified, and hence we
have a�=a�=0, but aL�0. Then, we recover the quantitative
phase-field model on both solid-liquid interfaces; the solid-
solid interface is not a problem, because it does not move
�except close to the trijunction� in the one-sided model.

We should mention here that the computational effort to
simulate the situation with unequal surface tensions �ak�0
for any k� is generally larger than for equal surface tensions
�ak=0∀k�. This is due to the fact that the free-energy land-
scape of a i-j interface whose saddle has been risen �ak

�0,k� i , j� is steeper than that of an unaltered interface, so
that a finer discretization is necessary.

IV. NUMERICAL TESTS

A. Implementation

Our goal here is to show how the model derived in the
preceding section is used in practice and to assess its validity
and precision. We start by writing down the complete evolu-
tion equations for the one-sided, nonvariational model with
antitrapping current. They are essentially the same as Eqs.

�3.22� and �3.23� of the minimal model, except that Eq.
�3.22� now includes a contribution from fsaddle, D�p��=DpL,
the gi have been replaced by hi= pi in Eq. �3.23� but not in
Eq. �3.22�, and the total concentration current is now given
by Eq. �3.51�, which includes the antitrapping term. We
make the equations dimensionless by scaling lengths by W

�x̃=x /W , z̃=z /W ,��̃ =W�� � and times by the �̄= ���+��� /2
used in the equation that sets ��p��, Eq. �3.46� �t̃= t / �̄�. The
result reads

�̃�p��
�pi

�t̃
= �̃2pi +

2

3�− 2pi�1 − pi��1 − 2pi� + �
j�i

pj�1 − pj�


�1 − 2pj�� + 2�aipjpk��pj + pk�fa,i − 2fb,i�

+ �
j�i

ajpipk��pi − 2pk�fa,j + fb,j��
+ �̃�

j
� �gj

�pi
�

p�+p�+pL=1
��Aj − Bj� ∀ i , �4.1�

��

�t̃
= ��̃ · �D̃pL��̃ �� − �

i

Ai
�pi

�t̃
+ 2a �

i=�,�
�Ai − AL�


�− n̂L · n̂i���̃ · �n̂i
�pi

�t̃
� , �4.2�

where fa,k
 pipj + pk�1+bpk /3�, fb,k
 pipj�1/2+bpk /3�, and
we recall that the ���gj /�pi��p�+p�+pL=1 are given by Eqs.

�3.24� and �3.25�, that n̂i=�� pi / ��� pi�, and that we use a
=1/ �2	2� to exactly counterbalance solute trapping.

Only dimensionless parameters remain in the equations,
namely, the already dimensionless coefficients Ai, Bi, ai, b,

and �̃, and the scaled D̃=D�̄ /W2 and �̃�p��=��p�� / �̄ �with its
limiting values �̃�=�� / �̄ and �̃�=�� / �̄�, where ��p�� is given
by Eq. �3.46�. The coefficients Ai�T� and Bi�T� are just con-
stants for isothermal solidification, but depend on space and
time �through the temperature� for directional solidification.
Their explicit expression, given when choosing the phase
diagram in Sec. IV B, will contain the rescaled pulling speed

ṽp=vp�̄ /W and thermal lengths l̃T
i = lT

i /W.
We numerically integrate Eqs. �4.1� for p� and p� only

�the equation for pL is redundant� as well as Eq. �4.2�; pL is
eliminated everywhere through pL=1− p�− p�. We use a
simple Euler, forward-time, centered-space finite-difference
scheme with a grid spacing �x̃ and a time step �t̃ slightly
below the stability limits of both the discretized diffusion
and the phase-field equations, the lowest of which reads �t̃

= �1/4���x̃�2 min
1/ D̃ , �̃� , �̃��. We use standard second-order
accurate finite differences, except for the Laplacians, which
are discretized by a nine-point formula involving nearest and
next nearest neighbors to reduce lattice anisotropy. We use
�x̃=0.8 unless otherwise stated, which is the largest value
for which most results are numerically converged. Excep-
tionally, some parameter sets require �x̃=0.4.

We simulate two-dimensional directional �or, in one case,
isothermal� solidification in a rectangular simulation box of

FIG. 7. �Color online� Illustrative surface plot of the two phase
fields p� and p�, for two half lamellae as described in the text. 40

40 grid points shown; the system is actually larger in the z
direction.
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total size nx
nz, where nx and nz are the number of grid
points in the direction perpendicular and parallel to the ther-
mal gradient, respectively. We consider perfectly periodic
lamellar arrays. A minimal representation of this geometry
consists of a simulation box with no-flux boundary condi-
tions in both the x and z directions and two adjacent half
lamellae, one of each phase, with their centers on the box
boundaries and the trijunction in the middle. Typically, we
start with completely flat interfaces, and the phase fields are
initialized as step functions, located at some initial guess for
the interface position. These step functions then quickly re-
lax to the smooth solutions for the phase fields, while the
interfaces begin to curve and drift to adjust their average
undercooling. Alternatively, the outcome of a previous simu-
lation may also be taken as initial condition. An example for
the resulting configuration of the phase fields is shown in
Fig. 7. It can be clearly seen that the fields smoothly ap-
proach their bulk equilibrium values outside the interfaces,
and that, on each i-liquid interface �at x=const sufficiently
far from the solid-solid interface�, the other solid phase, j
� i, is absent �pj =0� through the entire interface �as z var-
ies�.

In order to reduce the computational effort, we take ad-
vantage of two circumstances. First, as can be seen in Fig. 7,
most grid points correspond to bulk phases, so that the evo-
lution equations can be replaced there by simpler versions,
which leads to an enormous saving in the total number of
operations per time step. Furthermore, most of the remaining
grid points correspond to purely binary interfaces, so that all
the terms in the third, vanishing phase field can be dropped.
Only in the small area near a trijunction do the full equations
need to be integrated. According to the conditions Eqs. �3.9�,
wherever a phase field takes a locally constant value of zero
�purely binary interface or bulk phase� or unity �bulk phase�,
it will remain constant, so that it does not need to be updated,
and its whole evolution equation can be dropped. In practice,
we first compute the Laplacian of each phase field every-
where, and then proceed with further calculations for a phase
field pi only if the modulus of its Laplacian exceeds a certain
�small� threshold. Similarly, the source and antitrapping
terms in the evolution equation for the chemical potential in
Eq. �4.2� are evaluated for the locally varying phase field�s�
only. In particular, this means that they can be dropped for
bulk phases. Therefore, in the bulk only the simple diffusion
equation needs to be solved; in the one-sided model, no field
needs to be updated in the solid, be it bulk or �-� interface.

Second, since the diffusion and thermal lengths are much
larger than the lamellar spacing, the number nz of grid points
required in the direction of the thermal gradient is typically
much larger than nx. A simple analytical calculation �see, for
example, Ref. �36�� shows that the lateral gradients of the
diffusion field decay with the distance to the growth front
over a length of the order of the interfacial pattern ��nx�,
whereas in the direction of the pulling the solutal boundary
layer decays only on the scale of the diffusion length. There-
fore, the spatial resolution can be decreased with the distance
to the growth front beyond a scale comparable to nx. This can
be achieved by multiscale algorithms. We have adapted the
random walker algorithm of Ref. �41� to eutectic solidifica-
tion; however, a disadvantage of this method is its numerical

noise. For our relatively simple geometry, it is straightfor-
ward to implement a finite-difference scheme that uses
coarser and coarser grids away from the interface. We used a
hierarchy of in total three grids of increasing length in the z
direction as sketched in Fig. 8. The solutions on the different
grids are connected by simple linear interpolation. At the end
of the coarsest grid, lateral concentration gradients are neg-
ligibly small; therefore, we solve the diffusion equation in
one dimension beyond this point and connect the solution to
the coarsest grid. We carefully checked that the dependence
of the solution on the position of the interpolation boundaries
is negligible.

Finally, we also follow the solidifying front by advancing
the simulation box from time to time along the growth direc-
tion. In practice, this is implemented by shifting the whole
box forward a distance equal to the coarsest grid spacing
�4�x̃�, each time the product ṽpt̃ of pulling speed and time
corresponds to a multiple of this distance. Since far enough
in the solid the diffusivity vanishes and no evolution takes
place, the coldest part of the solid can be removed without
altering the simulation; points are added on the liquid side.
The boundaries between grids are also adjusted, and initial
values on the border of the finer grids are obtained by inter-
polation from the coarser grids.

B. Choice of parameters

The parameters that characterize a given physical situa-
tion can be grouped into different classes. First, there are the
characteristics of the phase diagram and some materials pa-
rameters that depend only on the alloy system. Second, there
are the control parameters accessible to the experimentalist,

FIG. 8. Configuration of the multigrid scheme. In front of the
solids that grow upward, a fixed number nf of rows is treated on
the fine grid with spacing �x̃, which corresponds to a distance d
=nf�x̃. Two coarser grids of spacing 2�x̃ and 4�x̃ have again nf

rows each, which corresponds to distances 2d and 4d, respectively.
Beyond the coarsest grids, the solution is one dimensional.
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namely the sample composition and either the undercooling
for isothermal solidification, or the pulling speed vp and the
temperature gradient G for directional solidification. Finally,
there is the lamellar spacing, which cannot be directly con-
trolled in experiments, but can be fixed in the simulations by
choosing appropriate initial and boundary conditions.

For coupled eutectic growth at low solidification speeds,
we can make several simplifying assumptions and approxi-
mations in order to keep the number of relevant parameters
to a minimum. Since the average temperature of the solidi-
fication front is very close to TE, we can �i� use a phase
diagram linearized around the eutectic point, as specified in
Eq. �2.2� of the FBP. This can be implemented by setting the
parameters Ai and Bi to

AL = 0, Ai = ci +
�ki − 1��T − TE�

�mi��C
= ci + �ki − 1�

z̃ − ṽpt̃

l̃T
i

,

�4.3�

BL = 0, Bi =
Ai�T − TE�

mi�C
= 	 Ai

z̃ − ṽpt̃

l̃T
i

, �4.4�

where the second equalities are obtained using Eq. �2.1� for
the temperature and the definitions of the thermal lengths,
Eq. �2.8�. The minus �plus� sign corresponds to the � ���
phase. Furthermore, we can �ii� neglect the relative variation
of the concentration gaps with respect to their values at TE.
This is equivalent to set ki=1 �parallel liquidus and solidus
lines� in Eq. �2.5b� �42�. The advantage here is that two
parameters �the ki� are eliminated and that the Ai above
become independent of temperature. Finally, at low solidifi-
cation speeds we can also �iii� neglect the kinetic undercool-
ing of the growth front, i.e., we adopt ��=��=0, which is
also the most reasonable choice with the information avail-
able, since these coefficients are unknown. All of these ap-
proximations were also made in the classic Jackson-Hunt
analysis �36�.

Furthermore, we use equal surface tensions for both solid-
liquid interfaces ���L=��L�, which implies equal contact
angles 
�=
�

. This is a reasonable assumption with the
available data for CBr4-C2Cl6, 
�=70° ±10° and 
�

=67° ±10° �33�. In our test calculations below, we use val-
ues of the computational parameters for which angles rang-
ing from 
=30° �all surface tensions equal� to 66° �case of
CBr4-C2Cl6� are expected.

With approximations �i� and �ii� above, the phase diagram
can be characterized by the two ratios

rm = �m� /m�� , �4.5�

rc = �c� /c�� . �4.6�

Note that we have c�−c�=1 due to the normalization, and
hence it follows that c�=rc / �rc+1� and c�=−1/ �rc+1�. The
measured properties for CBr4-C2Cl6 are listed in Table I.
According to the constraint of Eq. �3.45�, for equal surface
tensions we should have d� /d�=rc. From Table I, we find
d� /d�=2.7±0.5, while rc=2.5±0.5. Thus, the constraint is
respected to within the accuracy of the measured data. For
our simulations, we must choose a set of values that exactly
satisfies the constraint and is compatible with the experimen-
tal error bars. We use the concentrations to fix rc=d� /d�

=c� /c�=2.5, and take as a reference length the average

d̄ = �d� + d��/2 �4.7�

of the measured capillary lengths, d̄=6.5 nm. The capillary

lengths obtained using this value of d̄ together with rc=2.5
and the constraint are listed on the last column of Table I.
Similarly, we choose rm=2 and fix a corresponding pair of
values for the liquidus slopes within the error bars. Finally,
we adopt the mean measured value of the solute diffusivity,
D=0.5
10−9 m2/s. The measured and used values of the
parameters are summarized in Table I.

The control parameters which can be varied in an experi-
ment enter our simulations as follows. The global sample

TABLE I. Materials parameters of the transparent alloy CBr4-C2Cl6, as measured in Ref. �33�, and the values used for the present study
�see text�. The di listed under Ref. �33� were obtained using the basic definitions of Eq. �2.9� together with the thermophysical data from that
reference. The value of CE used corresponds to rc
2.5.

Quantity Symbol Ref. �33� Value used

Liquidus slope of � m� −�81±5� K/mol −82 K/mol

Liquidus slope of � m� �165±5� K/mol 164 K/mol

Composition of � at TE C� �8.8±0.4� mol % 8.8 mol %

Composition of � at TE C� �18.5±0.9� mol % 18.5 mol %

Eutectic composition CE �11.6±0.6� mol % 11.571 mol %

Capillary length of � d� �9.5±2.0� nm 9.29 nm

Capillary length of � d� �3.5±1.0� nm 3.71 nm

Contact angle of � 
� �70±10�° 30°–66°

Contact angle of � 
� �67±10�° 30°–66°

Partition coefficient of � k� 0.75 1.0

Partition coefficient of � k� 1.5 1.0

Impurity diffusivity D �0.5±0.1�
10−9 m2/s 0.5
10−9 m2/s
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composition is fixed by imposing the appropriate value for
the chemical potential ��z→��=c� �recall that AL=0� as a
boundary condition on the liquid side of the simulation box.
For isothermal solidification, the undercooling enters through
Eqs. �4.3� and �4.4� in dimensionless form, �i= �TE

−T� / �mi�C�. For directional solidification, the pulling speed
vp and the thermal gradient G enter through the same equa-
tions via the diffusion and thermal lengths lD=D /vp and lT

i

= �mi ��C /G. Note that lT
� / lT

�=rm, so that lT
�= �2/ �1+rm��l̄T

and lT
�= �2rm / �1+rm��l̄T, where we recall that l̄T= �lT

�+ lT
�� /2 is

the average thermal length. Finally, the lamellar spacing �

�not to be confused with the coupling constant �̃� is fixed by
the lateral size of the simulation box.

To summarize, the physical conditions to simulate are
completely specified by the two asymmetry parameters rc

and rm and four lengths, namely, d̄, l̄T, lD, and �. From these
four length scales, three dimensionless parameters can be

constructed. We choose lD / d̄, � /�JH, and l̄T / lD. The second
choice is motivated by the fact that the Jackson-Hunt mini-
mum undercooling spacing �JH is a reference length for eu-
tectic pattern formation. Dividing both sides of Eq. �2.17� by

d̄ yields �JH/ d̄�	lD / d̄, where the proportionality constant
depends only on the sample composition �through the vol-

ume fraction �� and on rc �through the ratios di / d̄�. There-

fore, specifying � /�JH and lD / d̄ fixes implicitly � / d̄.
All physical conditions fixed, we now choose the only

truly free computational parameter, the interface thickness
W. The relevant scale of the pattern is of course the lamellar
spacing �, and therefore the resolution of the phase-field
simulations is given by the ratio � /W. Let us first outline the
procedure to determine the parameters when the spacing is
given in physical units �meters�. Then, � /W directly fixes W

in meters. Next, the coupling constant �̃ is determined from
Eqs. �3.40� for the capillary lengths in terms of phase-field
parameters �recall that AL=0�,

�̃ =
W

d̄

a1

2
� 1

�A��
+

1

�A��� . �4.8�

Finally, the relaxation times �i �in seconds� are obtained �for
arbitrary kinetics� using Eq. �3.47�,

�i = �̃�Ai�W��i

a1
+ a2

�Ai�W
D

� , �4.9�

which yields �̄= ���+��� /2 and the �̃i=�i / �̄. The diffusion

coefficient D̃, pulling speed ṽp, and thermal lengths l̃T
i

needed in Eqs. �4.1� and �4.2� are then obtained by scaling
the corresponding dimensional quantities by W and �̄. For
isothermal solidification, the dimensionless undercooling �i
is directly obtained from the actual temperature T and the
alloy properties TE, mi, and �C.

An alternative way to obtain the simulation parameters is
to start directly from the dimensionless ratios. Indeed, speci-

fying � /W for fixed � / d̄ directly fixes W / d̄ and hence �̃ from
Eq. �4.8�. For ��=��=0, Eq. �4.9� yields �̃� / �̃�

= ��A�� / �A���2. For the case ki=1 considered here, Ai=ci, and

hence �A�� / �A��=rc, and we obtain directly �̃�=2/ �1+rc
2� and

�̃�=2rc
2 / �1+rc

2�. With these values fixed, Eq. �4.9� with the ci

given after Eqs. �4.5� yields the scaled diffusivity,

D̃ = �1/2�a2�̃�1 + rc
2�/�1 + rc�2. �4.10�

Since W / d̄ and lD / d̄ are both known, the scaled pulling

speed can then be inferred from lD /W= D̃ / ṽp; finally, the

scaled thermal lengths are obtained via the ratio l̄T / lD for
directional solidification, or the dimensionless undercooling
�i is directly plugged into the Ai’s and Bi’s for isothermal
solidification.

To illustrate the above procedure, we show in Tables II
and III the computational parameters for different values of
the interface thickness for two series of test simulations that
will be discussed in detail below. Both sets of simulations are
carried out at the eutectic composition and for the minimum
undercooling spacing �=�JH of Eq. �2.17�. The first is for a
model alloy with a symmetric phase diagram, rm=rc=1. For
such an alloy at the eutectic composition, all equations are
completely symmetric with respect to the interchange of the

two solid phases. In this case, we use l̄T / lD=4 and lD / d̄
=51 200. The second set of simulations is for the phase dia-

gram of CBr4-C2Cl6, rc=2.5 and rm=2, and we use lD / d̄

=41 796 and l̄T / lD=4, which corresponds to a pulling speed
of vp�1.8 �m/s and a temperature gradient of G
�110 K/cm, both fairly typical experimental values.

Finally, the ai are dimensionless parameters that control
the ratio of surface tensions through the relative heights of
the free-energy barriers between bulk phases. They hence
provide a handle on the contact angles. The choice of the ai
is independent of all the other parameters. For equal solid-

TABLE II. Simulation parameters used in the runs for the sym-

metric model alloy. Physical parameters are lD / d̄=51 200, l̄T / lD

=4, �=�JH, and the sample is at eutectic composition. Space and
time units are W and �̄, respectively.

� /W D̃ �̃ ṽp l̄T /W �t̃

32 10.633 36.197 0.0079729 5334.5 0.012038

64 5.3164 18.098 0.0019932 10669 0.024077

96 3.5442 12.066 0.00088588 16003 0.036115

128 2.6582 9.0491 0.00049831 21338 0.048153

TABLE III. Simulation parameters used in the runs for CBr4

-C2Cl6. Physical parameters are lD / d̄=41796, l̄T / lD=4, �=�JH, and
the sample is at eutectic composition. Space and time units are W
and �̄, respectively.

� /W D̃ �̃ ṽp lT
� /W lT

� /W �t̃

32 14.852 42.713 0.013141 3013.7 6027.4 0.0086186

64 7.4258 21.357 0.0032854 6027.4 12055 0.017237

96 4.9505 14.238 0.0014602 9041.1 18082 0.025856

128 3.7129 10.678 0.00082134 12055 24110 0.034474
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liquid surface tensions, we recall that a�=a�=0; aL will then
be varied in Sec. IV C to tune the ratio of solid-liquid to
solid-solid surface tensions, and thus change the solid-liquid
contact angle 
. A change from aL=0 to aL=12 is necessary
to span contact angles from 0° to 66° as desired. On the other
hand, the dimensionless coefficient b controls the strength of
the obstacle term in Eq. �3.56�. It needs to be tuned to ensure
the convexity of the free-energy landscape; we test values
ranging from b=3 to b=12.

C. Isothermal solidification and contact angles

We begin our simulations by testing whether our model
reproduces the correct contact angles at the trijunction point.
For that purpose, we need to extract first the interface shapes,
then the trijunction position, and finally the angles between
interfaces from the simulations. We proceed as follows.

The difference pj − pi is computed everywhere, for every
pair of phases i� j. Wherever one of these combinations
changes sign, we interpolate the position of a i-j interface
point from the two adjacent values of pj − pi; we also inter-
polate the value of the third phase pk at that point. If pk
�1/3, the point lies on a “true” i-j interface; otherwise, it is
located inside the third bulk phase on the “prolongation” of
the interface beyond the trijunction point. In most cases, the
latter points are not plotted, and the i-j interface terminates at
the trijunction; however, as we will see below, it is some-
times useful to plot the prolongation as well, because it can
yield information about the internal structure of the trijunc-
tion. The average undercooling of each interface is obtained
from the z position of all of its points. In order to avoid sharp
cutoffs and discretization errors at trijunctions, the contribu-
tion of each point on the pi= pj isocontour to the undercool-
ing is weighted by 1− pk, rather than simply counting points
on the “true” interface and discarding points on the prolon-
gation.

When all three interfaces enter and leave a particular el-
ementary grid square exactly once, their entrance and exit
positions computed by the method described above define
one straight segment for each interface. If all three segments
intersect with each of the other two, a triple point is consid-
ered to be detected at the average position of the three inter-
sections, provided that this lies within the grid square. While
this procedure yields an excellent subgrid resolution for the
position of the trijunction points, the determination of the
angles from the slopes of the segments is subject to large
grid effects �that is, the values obtained are found to depend
on the position of the trijunction with respect to the grid
points�. Therefore, we use a more precise procedure. Around
a detected trijunction point, a few interface points on both
sides of the trijunction are first obtained with high precision
using nonlinear interpolations. Then, two such points on each
side of the trijunction are used together with a nonlinear
interpolation to obtain the angles at the trijunction position.
With this procedure, the uncertainty on the angles due to grid
effects is reduced to about 0.1°.

Before engaging in directional solidification, we test both
the model and the above procedures by simulations of iso-
thermal solidification, in which the temperature is set to a

constant value below the eutectic temperature; in the free-
boundary problem, the terms �zint−vpt� / lT

i are then replaced
by constants −�i where �i= �TE−T� / �mi�C� is the dimen-
sionless undercooling of phase i �i=� ,��. Since the interface
temperature is fixed, the quantity to be selected is now the
interface velocity. This velocity is negative for low under-
cooling �the lamellae melt�, positive for high undercooling,
and exactly zero for a critical undercooling that depends on
the lamellar spacing through the curvature of the solid-liquid
interfaces. For the symmetric model alloy at the eutectic
composition, an exact solution for this critical stationary
state is known. Since the composition in the liquid and the
temperature are uniform and the velocity is zero, the inter-
face curvature is constant �see, for instance, Eq. �2.2��, so
that the two solid-liquid interfaces form circular arcs that
intersect at the trijunction point. For a given contact angle
and lamellar spacing, the critical undercooling is

�c = 4 sin 

d̄

�
. �4.11�

We conducted series of simulations with different under-
coolings and extracted the velocity of the solid-liquid inter-
face once it had reached a steady state; the critical undercool-
ing was obtained by seeking the zero crossing of the velocity.
The grid spacing was fixed to �x̃=0.4 to better resolve the
neighborhood of the critical undercooling �small velocities�,
and the parameters of the first line in Table II �except ṽp and

l̃T� were used. We tested five different values of aL for which
equilibrium angles from 
=30° to 
=66° are expected from
Young’s law, with a constant b=12. The predicted angle was
then plugged into Eq. �4.11� to obtain the theoretical value of
the critical undercooling. The latter is then compared to its
measured value, as summarized in Table IV. We find excel-
lent agreement between simulations and theory; the error in
the undercooling increases with aL �and hence with the con-
tact angle�, but remains of the order of 1% even for aL=12,
which corresponds to 
=66°. In particular, this implies that
Young’s law is satisfied.

However, if we measure the contact angles directly using
the numerical procedure outlined above, we find a consistent
result only for aL=0, that is, the measured contact angles are
very close to 30°; for aL�0, we find angles that differ
widely from the expected values. Furthermore, whereas the
detected critical undercooling is almost independent of the

TABLE IV. Critical undercooling for stationary lamellar states
for various values of aL �and hence of the contact angle 
�; b=12 in
all cases. The other parameters are given in the first line of Table II.

aL 
 expected �c �simulation� �c�
� �theory� Error

0 30° 0.001624 0.001628 0.25%

3 39° 0.002047 0.002055 0.39%

6 48° 0.002390 0.002408 0.75%

9 56° 0.002686 0.002713 1.00%

12 66° 0.002946 0.002987 1.37%
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parameter b, the measured angles for aL=12 vary by 20°
when b is varied between 3 and 12.

The reason for this behavior becomes apparent in Fig. 9.
We show the analytical solution, which consists of two cir-
cular arcs with contact angles 
=66°, as well as the inter-
faces extracted from the simulations for two different values
of b. Whereas the agreement between the two simulations
and the theory is excellent far from the trijunction, the three
shapes start to become different at a distance of about W
from the trijunction. The lines pi= pj exhibit curvatures
which differ from the curvature of the circular arcs of the
analytical solution, and which depend on the value of b; the
position of the trijunction point also depends on b. If one
recalls that b controls the strength of the obstacle term in Eq.
�3.56� and hence serves to raise the triple point in the free
energy landscape, the explanation for these dependences is
clear. The internal structure of the trijunction region �the con-
figuration of the phase fields in this region� is obviously
determined by the shape of the free energy landscape around
the triple point. Note, however, that the radius of curvature of
the solid-liquid interfaces far from the trijunction does not
change. This implies that the critical undercooling remains
the same, and hence that Young’s condition and the contact
angles extrapolated from the interfaces to the trijunction are
correctly implemented in all cases.

The lesson from all this is that the local procedure out-
lined above does in general not yield the “macroscopic”
angles, but values that are influenced by the internal structure
of the trijunction region. A different possibility to obtain the
“macroscopic” angles would be to construct the intersection
of the two solid-liquid interfaces, extrapolated from their

shape outside the trijunction. However, this procedure is
prone to large errors out of equilibrium, since the curvature
varies along the interfaces. As a consequence, contact angles
are very hard to measure in out-of-equilibrium situations
when 
�30°. When 
=30°, the “local” procedure works
properly. The particularity of this value is, of course, the
symmetry between all three phases, which entails that the
prolongation of the interface inside the third phase runs ex-
actly in the middle between the two other interfaces and is
not “deflected” from the direction in which it enters the tri-
junction. In contrast, for aL�0, the local shape and curva-
ture of this isoline depend on the internal structure of the
trijunction, which explains the errors made in the “local”
measurement of the angles.

Since we are interested in precise information on the
angles, we restrict all the following simulations to the case of
equal surface tensions, where reasonably accurate measure-
ments of the angles can be carried out. An additional advan-
tage of this choice is that it avoids the reduced grid spacing
needed to resolve the steeper interfaces associated to a higher
surface tension. For aL=12 �which corresponds to the actual
value of 
 in CBr4-C2Cl6�, �x̃ needs to be divided by a
factor of 2 ��x̃=0.4� with respect to aL=0, which implies
using a 4 times larger system size �in terms of grid points�
running for 4 times more time steps �recall that �t̃� ��x̃�2�,
which hence takes 16 times more CPU time. Having tested
the equilibrium angles, in the remaining sections we focus on
out-of-equilibrium simulations of directional solidification.

D. Steady state lamellae

The convergence of our model to the thin-interface pre-
dictions is tested by performing series of simulations for
fixed physical parameters and decreasing interface width. For
each simulation, the interface profiles and interface under-
cooling are monitored to check when the steady state is
reached. For comparison, the same series of runs is also per-
formed without the antitrapping current, and for an earlier
version of our model presented in Ref. �26� that uses differ-
ent interpolation functions gi. Since those functions are not
antisymmetric with respect to the point pi= pj =1/2 on i-j
interfaces �i.e., they do not satisfy Eq. �3.15��, this model
exhibits several thin-interface corrections �8,37�.

The parameters used for the simulations of the model al-
loy with symmetric phase diagram are listed in Table II.
Simulation times on a 2.4 GHz Intel Xeon processor range
from one-half hour for the lowest resolution �� /W=32� to 3
days for the highest �� /W=128�. The results for the interface
profile are shown in Fig. 10, together with results of bound-
ary integral calculations performed with the code of Ref.
�17�. Whereas for the present model all curves for � /W
�64 superimpose perfectly, for the other models large errors
appear. It can be seen that they are smaller for the model that
only lacks the antitrapping current; however, a decisive
progress is made only when all thin-interface corrections are
eliminated. Even so, a small difference with the boundary
integral prediction remains in the W /�→0 limit. However, a
close examination reveals that the two solutions are simply
shifted with respect to each other, which is due either to a

FIG. 9. Lamellar states, simulated with a constant temperature
that yields almost zero growth speed, and comparison to the ana-
lytical critical stationary solution that consists of circular arcs. Two
different values of b are used together with aL=12 �predicted angle

�66°�. Since, at constant temperature, the origin of the z axis is
arbitrary, the solutions have been shifted in order for lamella tips to
coincide. The curves shown are the isocontours p�= pL and p�

= pL, to be compared with the theoretical circle arcs with the pre-
dicted contact angle 
 �solid curve�. The isocontour p�= p�, exactly
vertical and located at x /W=8, has been omitted for clarity.
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residual interface kinetics in the phase-field model or to the
approximations of the boundary integral method. The rela-
tive error in the average undercooling is about 0.5%. Since
the advantage of the complete model over the other formu-
lations is obvious, it has been used exclusively for all the
remaining simulations.

We also examine the contact angles at the trijunction point
for the same series of runs with the complete model. We find
small deviations from the expected equilibrium value of 30°.
In Fig. 11, we plot the difference, 30°−
, as a function of
W /�. It can be seen that it extrapolates to zero in the W /�
→0 limit. This indicates that there is a finite-interface-

thickness correction to the nonequilibrium contact angles
that vanishes in the sharp-interface limit. Since the difference
is smaller than 2° for � /W�64, this effect is invisible in the
profiles and does not appreciably influence the results for the
undercooling. In particular, it cannot be responsible for the
0.5% undercooling mismatch described above, since the lat-
ter does not extrapolate to zero in the W /�→0 limit.

We now consider the dependence of the average under-
cooling of the front �T on the lamellar spacing �, which is
known as the Jackson-Hunt curve, Eq. �2.15�. We perform a
series of runs for the same materials and computational pa-
rameters as above, but with varying box size �and hence
lamellar spacing�. For the resolution, we take �JH/W=32 and
64, since, on the basis of Fig. 10�a�, we expect results to be
converged for �JH/W�64. The curves thus obtained are
plotted in Fig. 12, for the first ��JH/W=32, squares� and
second ��JH/W=64, circles� set of parameters of Table II.
The undercooling �T, scaled by m�C, can be directly ob-
tained through �T / �m�C�= �zint� / lT �note that for the sym-
metric model alloy, the two liquidus slopes and hence also
the two thermal lengths are equal, m�=m�=m and lT

�= lT
�

= lT�, where �zint� is the z position of the solid-liquid inter-
face, averaged over the lateral coordinate x. The line shows

FIG. 10. Convergence test for lamellar shapes in the symmetric
model alloy at the eutectic composition. The solid-liquid interfaces
are plotted for �a� the complete model, �b� without the antitrapping
current, and �c� a model with several thin-interface corrections
taken from Ref. �26�. The parameters for all runs are given in Table
II. Thin solid lines, � /W=32; dotted lines, � /W=64; dashed lines,
� /W=96; dashed–dotted lines, � /W=128; thick solid line, result of
the boundary integral code of Ref. �17�.

FIG. 11. Difference between the contact angle and the equilib-
rium value 30° as a function of W /� for the same series of runs as
Fig. 10�a�.

FIG. 12. Dimensionless average undercooling of the front ver-
sus dimensionless spacing �lD=D /vp is the diffusion length� for the
first two parameter sets of Table II. The curve is a best fit to the
Jackson-Hunt law �see text for details�.
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the best fit of the higher resolution data to the Jackson-Hunt
law, Eq. �2.15�, with �TJH and �JH as free parameters. The fit
yields �JH/ lD=0.024 68 and �TJH/ �m�C�=0.003 023,
whereas the theoretical values calculated from Eqs. �2.17�
and �2.16� are 0.024 03 and 0.003 251, respectively; this cor-
responds to relative differences of 2.7% and 7.0%, respec-
tively. This good agreement is especially noteworthy because
in phase-field models which exhibit thin-interface correc-
tions the difference between simulated and calculated mini-
mum undercooling spacings is usually much larger
�18,25,27�. Note that the Jackson-Hunt prediction for the
minimal undercooling and its corresponding spacing is based
on an approximate description of the front. We know from
Fig. 10�a� that the difference in average undercooling be-
tween the phase-field model and the boundary-integral
method is only 0.5% near the minimum undercooling. There-
fore, the 7% difference with the Jackson-Hunt value must be
attributed to the approximations in the theory, and not to the
phase-field model.

Next, we repeat a similar procedure for the phase diagram
of CBr4-C2Cl6. The parameters are listed in Table III, and
the resulting interface shapes shown in Fig. 13. The behavior
is qualitatively similar, but the convergence is slower. It can
be seen that successive interface shapes fall closer and closer
together as the resolution is increased. For the larger �
lamella, the shape is converged for � /W�64; for the smaller
� lamella, tiny differences remain visible even between
� /W=96 and 128. This is not surprising; convergence is
harder to achieve when smaller physical details �such as the
small � lamella here� must be resolved.

Again, the phase-field result is fairly close to the bound-
ary integral calculation. However, this time a clearly visible
difference remains. Whereas the phase-field result is above
the boundary integral for the � lamella, it is below for the �
lamella. Therefore, the difference is not a simple shift be-
tween the two solutions. An explanation for this fact comes
from the detailed examination of the angles at the trijunction
point. Contrary to the completely symmetric situation where
� and � are equivalent, the solid-solid interface does not
remain straight up to the trijunction. Rather, when the tri-
junction is approached this interface starts to tilt and exhibits

a small angle � with the vertical axis. The angles between
interfaces remain consistent with Young’s law, but the whole
trijunction zone is slightly rotated. Since we are in a steady
state, the trijunction necessarily moves vertically �in the
laboratory frame� as solidification proceeds. This implies that
the solid-solid interface is not the mere trijunction trajectory,
but must move after the trijunction passage, i.e., at its solid
side, which is possible in a phase-field model, since the dif-
fusivity decays to zero in the solid over a distance of order
W. In the sharp-interface formulation, in contrast, where the
diffusivity sharply falls to zero in the solid, the solid-solid
interface cannot move and must remain strictly vertical up to
the trijunction. This difference between phase-field model
and sharp-interface description induces the observed shape
difference between the converged phase-field solution and
the boundary-integral result. We plot in Fig. 14 the rotation
angle � as a function of W /�. Contrary to the deviation of
the contact angle from its equilibrium value found in Fig. 11,
this global trijunction rotation angle does not extrapolate to
zero for W /�→0, but rather seems to approach a finite
value. This behavior will be discussed in more detail below.

E. Oscillatory limit cycles

As it is well known, lamellar steady-state growth becomes
unstable above a critical spacing that depends on the growth
conditions and the alloy composition. At the eutectic compo-
sition, the first instability to occur is a period-preserving os-
cillatory instability, that is, all lamellae of the same phase
start to oscillate in phase. This instability can be captured by
our reduced simulation geometry, because the center lines of
each lamella remain symmetry planes of the pattern, whereas
the time translation symmetry of steady-state growth is bro-
ken. The oscillations amplify in the course of time and fi-
nally saturate and reach a limit cycle with a well-defined
amplitude. The bifurcation diagram of final oscillation am-
plitude versus lamellar spacing was found to be slightly su-
percritical in Ref. �17�. Simulating oscillatory limit cycles
close to the instability threshold therefore constitutes a par-
ticularly sensitive test of our model, because even slight de-
viations in the lamellar spacing or differences in behavior

FIG. 13. Convergence test for lamellar shapes in CBr4-C2Cl6.
The parameters of all runs are given in Table III. Thin solid lines,
� /W=32; dotted lines, � /W=64; dashed lines, � /W=96; dashed–
dotted lines, � /W=128; thick solid line, result of the boundary in-
tegral code of Ref. �17�.

FIG. 14. Trijunction rotation angle � �see text for definition�
versus W /� for the same series of runs as Fig. 13.
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will induce large changes in the oscillation amplitude.
We used the symmetric model alloy with the same physi-

cal parameters as in Sec. IV D, except the lamellar spacing,
which was fixed to �=2.2�JH. The simulations were started
with a slightly asymmetric initial condition in which one of
the lamellae was slightly ahead of the other. The limit cycle
rapidly emerged; an example for the simulated structure once
it has reached its final oscillation amplitude is shown in Fig.
15�a� for � /W=64. We define the amplitude A of the limit
cycle as the maximum deviation along x of the trijunction
from its steady-state position. We then normalize A by the
lamellar spacing � and plot A /� versus the resolution � /W in
Fig. 15�b�. It can be seen that the convergence is slow, the
results still depend on the resolution even for � /W=192.

One possible reason for this slow convergence can be
recognized in Fig. 15�c�, where we plot both a snapshot of a
trijunction region �solid curves� and the final solid-solid in-
terface left behind �dashed curve�. Like for the asymmetric
steady-state solutions, the trijunction seems to be slightly
rotated, that is, the direction of the instantaneous solid-solid
interface is not parallel to the direction of motion of the
trijunction point �indicated in Fig. 15�c� by an arrow and
roughly parallel to the final solid-solid interface�.

Figure 15 seems to imply that our phase-field model com-
mits large errors when calculating limit cycles. However, as
already mentioned, we have chosen here a particularly sen-
sitive test case. In Fig. 16, we show the whole bifurcation
diagram, that is, the amplitude of saturated limit cycles ver-
sus the lamellar spacing, calculated with two different reso-
lutions. As shown in the insets, the two curves can be super-
imposed quite nicely by a simple shift along the � axis.
Therefore, the relatively large difference in oscillation ampli-
tudes comes from a small shift in the instability threshold,
while the overall shape of the bifurcation diagram is quite
robust. The relative error committed on the instability thresh-
old is about 3%. Hence, our model remains a useful tool for
the exploration of nonlinear behavior in eutectic solidifica-
tion, even if the trijunction behavior prevents completely
converged calculations.

F. Discussion

The most interesting outcome of the above numerical tests
is the information about the behavior of trijunction points. As
already mentioned, to our knowledge no detailed rigorous
treatment of the equilibrium or dynamics of a diffuse trijunc-
tion is currently available. Therefore, only a qualitative ex-
planation of our numerical findings can be given, namely by
comparing the phase-field and sharp-interface pictures.

In the sharp-interface model, Young’s law is assumed to
hold even outside of equilibrium; furthermore, the solid-solid
interface cannot move, since the solute diffusivity vanishes
in the solid immediately adjacent to the trijunction. In the
phase-field simulations, both of these assumptions are re-
laxed. As for Young’s law, there is a deviation from the equi-
librium contact angles. In our simulations of the symmetric
model alloy, this deviation decreases with the interface thick-
ness and extrapolates to zero in the �numerical� sharp-
interface limit. A likely origin of this effect is the relaxational
time scale � of the phase fields: A certain time is necessary to
establish local equilibrium against the “pull” of the advanc-
ing isotherms.

A more surprising result is the rotation of the trijunction
as a whole, which appears as soon as the symmetry between
the two solid phases is broken. Here, we have shown only
results at the eutectic composition for an asymmetric phase
diagram; however, the same effect is recovered in the sym-
metric model alloy at off-eutectic composition, i.e., for un-
equal volume fractions of the two solids. The rotation does
not seem to vanish when the interface width tends to zero.
Although we cannot, at present, give a detailed explanation
of this phenomenon, two speculative ideas about its origin
might be pursued in the future. The first is that this effect
could result from the local equilibrium of curved diffuse in-
terfaces. Two different curvatures on the two sides of the
trijunction could lead to some “torque” on the scale of the

FIG. 15. Oscillatory limit cycle in the symmetric model alloy
for �=2.2�JH. �a� Snapshots of the two solid-solid interfaces �thick
lines� and successive solid-liquid interfaces �thin lines�. �b� Oscil-
lation amplitude A /� vs inverse interface thickness, � /W. �c�
Blowup of the trijunction region. Solid lines, instantaneous inter-
faces; dashed line, final solid-solid interface; arrow, direction of the
trijunction motion.

FIG. 16. Amplitude of saturated oscillatory limit cycles versus
lamellar spacing, for parameters corresponding to the first �circles�
and third �squares� lowest resolution in Fig. 15�b� �� /W=64 and
128 there, respectively�. Inset, same data, where the squares have
been shifted along the � axis by 0.07.
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diffuse trijunction. The second is that the solute diffusion
field in the liquid “wedge” close to the trijunction yields a
torque term via its coupling to the diffuse interfaces, which
would be a purely nonequilibrium effect.

The origin of corrections to the classic sharp-interface
model that do not vanish for sharp interfaces can be qualita-
tively understood. Contrary to the situation around a dendrite
or cell tip, where the lower cutoff scale for the diffusion field
is set by the local radius of curvature, a trijunction point is a
singular point in the sharp-interface model: Sufficiently close
to the trijunction, the concentration field obeys the Laplace
equation, whose solutions in a wedge geometry are known to
have singular derivatives. Indeed, when the flux lines of the
chemical components are drawn as sketched in Fig. 17, it can
be seen that the curvature of these lines diverges as the tri-
junction point is approached. Therefore, the sharp-interface
solution is, in some sense, inconsistent, because it is implic-
itly based on an assumption of scale separation between in-
terface and “macroscopic” scales. Physical interfaces are
smooth, and hence the local diffusion field around a trijunc-
tion varies on the same scale as the interface thickness.

As a consequence, the appearance of effects like the tri-
junction rotation is, in itself, not surprising. However, under-
standing them more quantitatively seems a challenging prob-
lem. Ideally, one would like to perform a matched
asymptotic analysis as for interfaces, which is formally still
possible. However, the problem is explicitly two dimen-
sional, since the lowest-order solution is an equilibrium tri-
junction between three straight interfaces; an analytical treat-
ment is hence quite difficult. In principle, this lowest-order
solution and the subsequent asymptotics could be found nu-
merically, but one expects two solvability conditions and
nontrivial boundary conditions to come into play in the
matching of the two-dimensional solutions on the macro-
scopic and the interface scales. A simpler alternative could
be to perform more simulations and study in detail the de-
pendence of the trijunction behavior on the various param-
eters such as growth speed, contact angles, phase diagram
and phase fractions; however, this is beyond the scope of the
present paper.

Recently, the dynamics of trijunctions was found to have
a noticeable influence on the stability of lamellar arrays at
small spacings �28�. More precisely, the stability threshold
for lamella elimination was found to be distinctly smaller

than the minimum undercooling spacing, contrary to previ-
ous predictions �34–36�. The reason is that the assumption
used in these predictions, namely that trijunctions move in
the direction normal to the large-scale envelope of the com-
posite front �Cahn’s rule�, was not satisfied. It should be
stressed that this effect is not necessarily related to the tri-
junction behavior found here, since Cahn’s rule does not
make any assumptions on the local configuration around a
trijunction.

V. CONCLUSIONS

We have presented and tested in detail a phase-field model
for two-phase solidification. The specific design of our free-
energy functional has allowed us to clearly separate, at a
local level, the dynamics of interfaces from those of trijunc-
tions, and to eliminate all thin-interface corrections to the
desired free-boundary dynamics for each solid-liquid inter-
face. Both properties have been checked by numerical simu-
lations: By the first we mean that interfaces between any two
phases are completely free of the third phase far enough from
the trijunctions, and this is indeed verified both at equilib-
rium and for moving interfaces �see Fig. 7�. As for the sec-
ond, it implies that simulations at fixed physical parameters
become independent of the interface thickness, provided that
it is not too large. To our knowledge, it is the first time that
the quantitative convergence to a sharp-interface solution as
the interface thickness is decreased, as shown in Fig. 10, has
been explicitly demonstrated for a phase-field model of so-
lidification with more than one solid phase.

For generic, nonsymmetric situations �unequal volume
fractions or physical properties of the two solid-liquid equi-
libria�, small differences exist between the converged phase-
field results and boundary-integral simulations. Furthermore,
while the convergence is very satisfying for steady-state so-
lutions, time-dependent morphologies such as oscillatory
limit cycles still exhibit thin-interface effects. Whereas these
prevent us, for the moment, from achieving calculations that
are completely independent of the computational parameters,
we have demonstrated that the resulting errors are very
small, except possibly in the vicinity of bifurcation points.
Since our model is not only very accurate, but also efficient,
it is a suitable tool for the investigation of pattern formation
in two-phase solidification. In particular, it can be applied to
simulate three-dimensional structures and to study their mor-
phological stability �43�.

Because the individual interface dynamics are perfectly
distinct and controlled in our model, the only possible source
of the observed differences to sharp-interface models lies in
the trijunction region. Indeed, our detailed numerical inves-
tigation has revealed that the behavior of the diffuse trijunc-
tions in the phase-field model differs slightly from the as-
sumptions usually made in sharp-interface theories, as
already discussed in Sec. IV F. Therefore, a quite surprising
outcome of this study is that the calculation of two-phase
microstructures is far more sensitive to the structure and dy-
namics of the trijunction points than one might have ex-
pected. Note that these findings have been possible only
thanks to the specific design of our model, which has al-

FIG. 17. Sketch of the diffusion field around a trijunction in the
sharp-interface picture. Lines with arrows indicate the flux of solute
around the trijunction.
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lowed us to eliminate all thin-interface corrections from the
dynamics of the solid-liquid interfaces, and to separate them
from those of the trijunctions. Therefore, our model is a
privileged tool to explore in detail the physics of diffuse
trijunctions, an interesting but challenging task. One conclu-
sion of our study is that, apart from its undeniable fundamen-
tal interest, this more detailed knowledge is also a necessary
ingredient for a future quantitative modeling of solidification
with an arbitrary number of phases.

Let us conclude by sketching how our model can be ex-
tended to treat more general situations. Here, we have lim-
ited ourselves to eutectic diagrams with straight liquidus and
solidus lines and constant concentration jumps; however, the
structure of our model makes it possible to simulate any
phase diagram. In particular, phase diagrams with curved
coexistence lines as well as peritectic phase diagrams can be
simulated without difficulty by choosing appropriate coeffi-
cients Ai�T� and Bi�T�.

Next, because of our specific choice for the coupling be-
tween composition and phase fields, the model lacks the ef-
fect of the local interface curvature on the solute rejection.
This �negligibly small� effect could be recovered by the in-
troduction of more complicated interpolation functions, as
shown for single-phase solidification in Ref. �8�.

Furthermore, the asymptotic analysis and the antitrapping
current in its present form are only applicable if the two
solid-liquid surface tensions are equal. In order to keep the
benefits of the model for arbitrary surface tensions, the
asymptotic analysis should be repeated �in part numerically�
along the lines of Ref. �8� as discussed in Sec. III H; this is a
straightforward albeit tedious calculation.

We expect that crystalline anisotropy can be incorporated
in the model in the standard way by making the interface
thickness depend on the local orientation of the interfaces.
However, care must be taken in order to ensure that the an-
isotropic model still has interfaces that are free of third-phase
adsorption. Finally, some considerations on how to general-
ize the model to more than three phases are presented in
Appendix C.
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APPENDIX A: TIME CONSTANTS

Here, we show that a linear relation between the time
derivatives of the phase fields and the driving forces does not
permit to choose different relaxation times for different in-
terfaces and still guarantee that each interface is free of any
third phase. For simplicity, we label the phase fields here by
p1, p2, p3, and, contrary to the conventions of the main body
of the paper, two different indices i and j can take equal
values.

A given configuration of the phase fields can be visualized
by a representative point in the three-dimensional vector
space spanned by the axes p1, p2, and p3 �see Fig. 18�. The
constraint p1+ p2+ p3=1 restricts the allowed positions to a
two-dimensional subspace, the plane that contains the points
�1, 0, 0�, �0, 0, 1�, and �0, 0, 1�. These points are also the
vertices of an equilateral triangle, the Gibbs simplex �shad-
owed area�. Only points inside the triangle are meaningful if
each phase field is to be interpreted as a positive volume
fraction.

The most general form for a linear relationship between
the time derivatives of the phase fields and the driving forces
�F /�pi is

�pi

�t
= − �

j=1

3

�ij
�F

�pj
, �A1�

where �ij can be seen as a linear map between the vector of
the driving forces, �F /�pi, and the vector of the time deriva-
tives, �pi /�t. Since the representative point must remain in
the plane which contains the Gibbs simplex, the vector of the
time derivatives must also lie in it, and therefore be normal
to the vector �1, 1, 1�. In contrast, there are no explicit con-
straints on the vector of the driving forces, which can have
any direction. Therefore, the matrix �ij must have the eigen-
vector �1, 1, 1� with eigenvalue zero, or, in other words, be a
projection on the allowed plane.

In addition, the free-energy density F is designed so that
on purely binary interfaces there is no driving force for the
formation of the third phase. For example, on the 1-2-
interface, the driving force along the p3 direction is zero;
therefore, the vector �F /�pi is parallel to �1,−1,0�. Since we
do not want the resulting time evolution to introduce the
third phase, the vector of the time derivatives must also be
parallel to �1,−1,0�. This implies that this vector must be an
eigenvector of the matrix �ij. The corresponding eigenvalue
is the relaxation rate for the 1-2-interface.

The same reasoning can be repeated for the 1-3-interface,
with the associated eigenvector �1,0 ,−1�. Since the two vec-
tors are not orthogonal, the only possibility that makes both
of them eigenvectors is that the whole subspace correspond-
ing to the plane of the Gibbs simplex is an eigenspace with a

FIG. 18. �Color online� Sketch of the phase-field state space.
The representative point of the system is confined to the plane p1

+ p2+ p3=1, whose intersection with the axes defines the vertices of
the shadowed triangle, the so-called Gibbs simplex.
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single eigenvalue. Therefore, all the time constants associ-
ated with purely binary interfaces are the same, and the only
valid choice for the matrix � is a multiple of the projector on
the plane of the simplex,

�ij = ���ij − uiuj� , �A2�

where û= �1,1 ,1� /	3 is the unit vector normal to the sim-
plex plane. Writing �=1/ ��H�, the resulting equations of
motion are

�
�pi

�t
= −

1

H
�
j=1

3 ��ij −
1

3
� �F

�pj
. �A3�

This is equivalent to Eqs. �3.4� in conjunction with the pre-
scription of Eq. �3.5�.

The only way to achieve different relaxation times for the
different interfaces while keeping purely binary interfaces is
therefore to introduce some nonlinearity in the relation be-
tween time derivatives and driving forces. We achieve this
by letting the time constant � depend on the phase fields.
Note that locally “anisotropic” dynamics in the configuration
space could also be induced by letting all the coefficients �ij
depend on the phase fields, so that the directions of the
eigenvectors and the associated eigenvalues depend on the
location in the configuration space.

APPENDIX B: SYMMETRY OF THE GRADIENT ENERGY
COEFFICIENTS

The gradient energy expression, Eq. �3.11�, satisfies the
conditions for no third-phase adsorption, Eqs. �3.9�. We now
consider its simplest generalization,

fgrad = �
mn

�mn

2
�� pm · �� pn, �B1�

a quadratic form in the gradients of the phase fields, where
the �mn are dimensionless constants that we assume to be
symmetric �and positive�, �mn=�nm��0�∀m ,n. We find that
Eq. �3.9a� is satisfied if and only if the coefficients that mul-
tiply the Laplacians of the phase fields in each purely binary
interface are all the same, so that this generalization does not
provide any extra freedom for our purposes.

To see this, compute the functional, constrained deriva-
tives of a free-energy functional Fgrad defined as the volume
integral of the gradient terms alone, Fgrad=�VKfgrad. Making
use of Eqs. �3.5� and �3.6�, we find

− ��Fgrad

�pk
�

p�+p�+pL=1
= K��

m

�mk��
2pm −

1

3�
mn

�mn��
2pm� .

�B2�

The condition of flatness with respect to variations of pk on a
i-j interface, Eq. �3.9a�, then yields

�ii − 2�ik = � j j − 2� jk, �B3�

where we have taken into account that pk
0 and pj =1− pi.
This can be written in a more symmetric way by adding �kk
to both sides,

�kk − 2�ik + �ii = �kk − 2� jk + � j j . �B4�

Two equivalent conditions can be obtained for the other two
interfaces, so that all three symmetric combinations �mm
−2�mn+�nn must have the same value.

Next, replace k with i in Eq. �B2� and, afterwards, apply it
to a i-j interface �pk=0�. One finds

− ��Fgrad

�pi
�

p�+p�+pL=1
=

K

3
�2�ii + � j j − 3�ij − �ik + � jk��2pi.

�B5�

Using Eq. �B3� to eliminate � jk−�ik, we find that the prefac-
tor of the Laplacian can be rewritten as �K /2���ii−2�ij +� j j�,
i.e., one-half of the combination that we saw above to be the
same for all interfaces. Therefore, we can choose �ij =�ij
without loss of generality, and we are back to the minimal
model with Eq. �3.11�.

The multi-phase-field models based on the approach of
Steinbach et al. �22� use a different expression for the gradi-
ent terms. It combines gradients of the phase fields with the
fields itself, and is hence not a simple quadratic form in the
gradients. We have checked that this expression does not
satisfy the condition of flatness; therefore, it is not a suitable
alternative for our purposes.

APPENDIX C: MORE THAN THREE PHASES

In principle, the multiphase formalism where each phase
field represents a local volume fraction can be extended to an
arbitrary number of phases. However, the methods we have
applied to ensure that interfaces are free of any adsorbed
third phase need to be generalized with care. Let us consider
a multiwell potential fMW constructed in the same manner as
our triple-well potential fTW, i.e., by a superposition of indi-
vidual double-well potentials for each phase field, fMW
=�i fDW�pi�. For fDW�p�= �p�v�1− p�v �with v a positive real�
the free energy of a point where n phases coexist �n junction�
is n1−2v�n−1�v. For our model, v=2, this expression has a
single maximum at n=3. Therefore, a quadrijunction already
has a lower free energy than a trijunction, which means that
the free-energy landscape fMW has undesirable local minima
for more than three phases. These lower-energy n junctions
can always be “raised” by adding one obstacle term fobs
=�m=1

n pi�m�
2 per n junction to treat, where i�m� spans the in-

dices of the n phases that meet at the junction. However, the
number of such terms becomes rapidly prohibitive when n
increases; in addition, such “steep” terms require a higher
numerical resolution. Alternatively, for 0�v�1 the
n-junction energy becomes monotonously increasing in n for
all positive n. Therefore, the simplest choice ensuring the
right topography for an arbitrary number of phases would be
v=1, a model considered in Ref. �31�; however, to our
knowledge no thin-interface analysis has been performed to
date for this inverse parabolic potential.
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